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1 Differentiable manifolds

1.1 Review of multivariable differential calculus

1.1.1 Real-valued differentiable functions

(i) Definition. Let f : U (⊂ Rn) → R, where U is an open set. Then for 1 ≤ k ≤
n, the k th partial derivative ∂ f

∂xk
at a = (a1, . . . , an) ∈U is defined by:(

∂ f

∂xk

)
a
= lim

h→0

f (a1, . . . , ak +h, . . . , an)− f (a)

h
.

(ii) Definition. A function f : U (⊂ Rn) → R is said to be continuously differ-

entiable on U (in symbols f ∈C 1(U )) if for 1 ≤ k ≤ n,
(
∂ f
∂xk

)
is well-defined

and continuous on U .

(iii) A function f : U (⊂Rn) →R is said to be differentiable at a ∈U if there exists
constants b1, . . . ,bn and a function r (x, a) defined on a neighborhood V ∋
a in U satisfying the following conditions.

(a) f (x) = f (a)+
n∑

i=1
bi (xi −ai )+∥x −a∥r (x, a).

(b) lim
x→a

r (x, a) = 0.

(iv) Theorem. Let f : U (⊂Rn) →R, where U is an open set. If f is differentiable

at a ∈ U , then f is continuous at a, and
(
∂ f
∂xk

)
a

exists for 1 ≤ k ≤ n and

bk =
(
∂ f
∂xk

)
a

. Conversely, if
(
∂ f
∂xk

)
for 1 ≤ k ≤ n exist for each y in some

neighborhood V ∋ a and are continuous on V , then f is differentiable at
a.

(v) Definition. Let f : U (⊂Rn) →R, where U is an open set. Then:

(a) f is said to be r-fold continuously differentiable (in symbols f ∈C r (U ))
if all of its r th order partial derivtaives exists at each a ∈ U and are
continuous on U .

(b) f is said to be smooth (in symbols) f ∈ C∞(U )) if f ∈ C r (U ) for each
r ≥ 1.
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(vi) Definition. A differentiable C r curve inRn is a continuous map f : (a,b) →
Rn such that each component function fi : (a,b) →R for 1 ≤ i ≤ n satisfies
fi ∈C r (a,b).

(vii) Proposition (Chain rule). Let f : (a,b) →U (⊂Rn) be a diffrentiable curve,
and let g : U → R be differentiable at f (t0) for some to ∈ (a,b). Then g ◦ f
is diffetentiable at t0 and we have:

d

d t
(g ◦ f )t0 =

n∑
i=1

(
∂g

∂xi

)
f (x0)

(
d xi

d t

)
t0

.

(viii) Definition. We say a domain U ∈Rn is star-shaped with respect to a ∈U , if
for each x ∈U , the line segment ax ⊂U .

(ix) Theorem (Mean Value Theorem). Let f : U (⊂ Rn) → R be differentiable
and let U be star-shaped with respect to a ∈ U . Then given x ∈ U , there
exists θ ∈ (0,1) such that:

f (x)− f (a) =
n∑

i=1

(
∂ f

∂xi

)
a+θ(x−1)

(xi −ai ).

(x) Corollary. Let f : U (⊂ Rn) → R be differentiable and let U be star-shaped

with respect to a ∈U . If for 1 ≤ k ≤ n,
∣∣∣ ∂ f
∂xi

∣∣∣ < k on U , then for any x ∈U ,

we have:
| f (x)− f (a)| < k

p
n|x −a|.

(xi) Corollary. If f ∈ C r (U ), then at each a ∈ U , the value of any k th order
mixed partial derivative is independent of the order of differentiation.

1.1.2 Differentiable functions Rn →Rm

(i) Definition. Let f : U (⊂Rn) →Rm , where U is open. Then:

(a) f is said to be differentiable of class r (in symbols f ∈ C r (U )), if fi ∈
C r (U ), for 1 ≤ i ≤ m.

(b) f is said to be smooth (in symbols f ∈ C∞(U )) is fi ∈ C∞(U ), for 1 ≤
i ≤ m.
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(ii) If f : U (⊂Rn) →Rm is differentiable on U , then its Jacobian matrix defined
by

D f :=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn


exists at each a ∈ A.

(iii) Proposition. A mapping f : U (⊂Rn) →Rm is differentiable at a ∈U (resp.
on U ) if and only if there exists an m×n matrix A of constants (resp. func-
tions on U ) and an m-tuple R(x, a) = (r1(x, a), . . . ,rn(x, a)) of functions on
U (resp. U ×U ) such that ∥R(x, a)∥ → 0 as x → a and for each a ∈ U , we
have:

F (x) = F (a)+ A(x −a)+|x −a|R(x, a).

If such R(x, a) and A exists, then A is unique and A = D f .

(iv) Theorem. Let f : U (⊂ Rn) → Rm , where U is open, and let U be star-like

with respect to a ∈U . If f is differentiable on U with
∣∣∣ ∂ fi
∂x j

∣∣∣≤ k for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, for every a ∈U . Then:

|F (x)−F (a)| ≤p
nmk|x −a|.

(v) Theorem(Chain Rule). Let f : U (⊂Rn) →V (⊂Rm) and let g : V →Rp . If f
is differentiable at a ∈U and g is differentiable at b = f (a), then h = g ◦ f
is differentiable at x = a and

Dh(a) = Dg (F (a))D f (a).

(vi) Corollary. Let f : U (⊂Rn) →V (⊂Rm) and let g : V →Rp . If f ∈C r (U ) and
g ∈C r (V ), then g ◦ f ∈C r (U ).

(vii) Let C = {x : (−ϵ,ϵ) → Rn : x ∈C 1(−ϵ,ϵ), x(0) = a, and ϵ ∈ (0,∞)}. Define an
equivalence relation ∼ on C by x(t ) ∼ y(t ) is x ′(0) = y ′(0), for 1 ≤ i ≤ n.
Then there exists a well-defined correspondence

C / ∼↔V n : [x(t )] ↔ (x ′
1(0), . . . , x ′

n(0)), (*)

where V n is vector space of dimension n over R.
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(viii) Definition. The correspondence in (*) above induces a vector space struc-
ture on C / ∼ called the tangent space of Rn at a denoted by Ta(Rn).

(ix) Definition. A map f : U (⊂ Rn) → V (⊂ Rm)is called a C r -diffeomorphism
if:

(a) f is a homeomorphism and

(b) both f and f −1 are of class C r .

(x) Let U ,V ,W ⊂Rn be open. Let f : U →V and g : V →W be onto mappings,
and let h = g ◦ f . If any two of these are diffeomorphisms, then so is the
third.

(xi) Theorem (Inverse Function Theorem). Let f : W (⊂ Rn) → Rn be a C r

mapping for some r ≥ 1. If for a ∈ W , D f (a) is non-singular, then there
exists a neighborhood U ∋ a in W such that V = f (U ) is open and f : U →
V is a C r -diffeomorphism. In particular, if y = f (x), then

D f −1(y) = (D f (x))−1.

(xii) Corollary. Let f : W (⊂ Rn) → Rn , where W is open. If D f (a) is non-
singular at each a ∈W , then f is an open map.

(xiii) Corollary. A C∞ map f : W (⊂Rn) →Rn is a diffeomorphism W → f (W ) if
and only if D f is non-singular at each a ∈W .

(xiv) Let f : U (⊂Rn) →Rm . Then the rank of D f (x) is defined to be rank of f at
x.

(xv) Theorem (Rank Theorem). Let f : U0(⊂Rn) →V0(⊂Rm) be a C r -mapping
and let rank of f be k at each x ∈ U0. If a ∈ U0 and b = f (a), then there
exists open sets U ⊂U0 and V ⊂ V0 with a ∈U and b ∈ V , and there exists
C r -diffeomorphisms g : U →U ′(⊂ Rm), h : V →V ′(⊂ Rm) such that h ◦ f ◦
g−1(U ′) ⊂V ′ and

h ◦ f ◦ g−1(x1, . . . , xn) = (x1, . . . , xk ,0, . . . ,0).
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1.2 Smooth manifolds

1.2.1 Topological manifolds

(i) Definition. A topological space M is said to be locally Euclidean of di-
mension n if for each p ∈ M , there exists a neighborhood Up ∋ p and a
homeomorphism ϕp from U to an open set in Rn , for some fixed n. Each
pair (Up ,ϕp ) is called a coordinate neighborhood (or chart of M .

(ii) Definition. An topological n-manifold (or a topological manifold of di-
mension n) is a topological space M with the following properties.

(a) M is Hausdorff.

(b) M is locally Euclidean of dimension n.

(c) M is second countable.

(iii) Examples of topological n-manifolds.

(a) An open subset of Rn is an n-manifold.

(b) The unit sphere S2 is a 2-manifold.

(c) The torus T 2 ≈ S1 ×S1 is a 2-manifold.

(d) The real projective n-space RP n = Rn+1 − {0}/ ∼, where x ∼ y , of y =
t x, or equivalently, the space of all lines through the origin in Rn+1 is
an n-manifold.

(e) If M is a smoothly embedded 2-manifold inR3, then the tangent bun-
dle of M defined by T (M) := ⋃

p∈M
Tp (M) is a 4-manifold.

(iv) Theorem. A topological n-manifold M has the following properties.

(a) M is locally connected.

(b) M is locally compact.

(c) M is a countable union of compact sets (i.e. σ-compact).

(d) M is normal and metrizable.

(v) Definition. A topological n-manifold with boundary is a Hausdorff, second-
countable space, where each p ∈ M has a neighborhood U ∋ p such that
U is homeomorphic via (a homeomorphism) ϕ to either:
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(a) an open set ofHn −∂Hn , whereHn = {(x1, . . . , xn) ∈Rn : xn ≥ 0}, or

(b) an open set inHn with ϕ(p) ∈ ∂Hn .

(vi) Examples of manifolds with boundary.

(a) The annulus S1 × I is a 2-manifold with two boundary components.

(b) The torus minus a disk is a 2-manifold with one boundary compo-
nents.

(c) The sphere minus 3 (mutually disjoint) open disks (also known as a
pair of pants) is a 2-manifold with three boundary components.

(vii) Theorem (Classification of 2-manifolds or surfaces).

(a) Every compact, connected, closed (without boundary), and orientable
(resp. non-orientable) 2-manifold is homeomorphic to a sphere with
g ≥ 0 handles (resp. g ≥ 1 crosscaps) attached.

(b) Every compact and connected 2-manifold with boundary is homeo-
morphic to a compact, connected, and closed 2-manifold with b ≥ 1
mutually disjoint imbedded open disks removed.

1.2.2 Smooth manifolds

(i) Definition. Two coordinate neighborhoods (Up ,ϕp ) and (Uq ,ϕq ) of a topo-
logical n-manifold M are said to be C∞-compatible (or smoothly compat-
ible) if Up ∩Uq ̸= ; implies that both ϕp ◦ϕ−1

q and ϕq ◦ϕ−1
p are diffeomor-

phisms.

(ii) Definition. A differentible (or C∞ or smooth) structure on a topological
manifold M is a family U = (Uα,ϕα) of coordinate neighborhoods of M
that satisfies the following conditions.

(a) The Uα cover M .

(b) For anyα,β, the coordinate neighborhoods (Uα,ϕα) and (Uβ,ϕβ) are
smoothly compatible.

(c) If (V ,ψ) is a coordinate neighborhood that is smoothly compatible
with every coordinate neighborhood in U , then (V ,ψ) ∈U .
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If U = (Uα,ϕα) satisfies just (a) & (b), it is called an atlas for M, and if
an atlas for M also satisfies (c) it is called a maximal atlas for M. Thus, a
smooth structure on M is also known as a maximal atlas for M .

(iii) Definition. A differentible (or C∞ or smooth) n-manifold is a topological
n-manifold M together with a smooth structure on M .

(iv) Theorem. Let M be a Hausdorff and second-countable space. Let {Uα,ϕα}
be a covering of M by smoothly compatible coordinate neighborhoods.
Then there exists a unique smooth structure on M containing these neigh-
borhoods (called the smooth structure determined by the {Uα,ϕα}).

(v) Examples of differentiable manifolds.

(a) Rn with the standard topology is a differentiable manifold with a sin-
gle coordinate neighborhood (Rn , i d) determining a structure by The-
orem 1.2.2 (iv).

(b) An n-dimensional vector space over R is a differentiable n-manifold.
Consequently, the vector space Mn(R) of n×n matrices over the reals
is a differentiable n2-manifold.

(c) An open subset of a differentiable n-manifold is also differentiable
n-manifold.

(d) The general linear group GL(n,R) is a differentible n2-manifold since
GL(n,R) = det−1(R\{0}) under the determinant map det : Mn(R) →R.

(e) The unit sphere S2 ⊂R3 is a differentiable 2-manifold with the differ-
entiable structure determined by {(U±

i ,ϕ±
i ) : 1 ≤ i ≤ 3}, where

U±
i = {(x1, x2, x3) ∈R3 : ±xi > 0} and ϕ±

i (x1, x2, x3) =πi (x1, x2, x3),

where πi denotes the projection onto the coordinate plane with the
unit vector ei as the unit normal.

(f) The real projective n-space RP n is a differentiable n-manifold with
the structure determined by the coordinate neighborhoods {(Ui ,ϕi ) :
1 ≤ i ≤ n +1}, where

Ui = {q(Ūi ) : Ūi = {x ∈Rn+1 : xi ̸= 0}} and q :Rn+1 →RP n is the quotient map}

and ϕi : Ui →Rn is defined by

ϕi (x1, . . . xn+1) =
(

x1

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn+1

xi

)
.
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(g) The Grassman manifold G(k,n) is defined to be the set of k-planes
through the origin in Rn . Let F (k,n) denotes the set of k-frames (i.e.
linearly independent sets of k elements) in Rn . Define an equiva-
lence relation ∼ on F (k,n) by:

X ∼ Y ⇐⇒ ∃A ∈ GL(n,R) such that Y = AX .

Then G(k,n) ≈ F (k,n)/ ∼. Hence, G(k,n) is Hausdorff and the quo-
tient map π : F (k,n) → G(k,n) is open. Given an ordered subset
J = ( j1, . . . , jk ) of (1,2, . . . ,n) and an A ∈ Mkn(R), let A J = (ai jℓ)1≤i ,ℓ≤k

be a k ×k submatrix of A and A′
J be the complementary k × (n −k)

matrix obtained by striking out the columns j1, . . . , jk of A. Let U J̄
be the open set of F (k,n) consisting of matrices for which A J is non-
singular and let UJ =π(U J̄ ). Then G(k,n) is a differentiable manifold
with a differentiable structure determined by the coordinate neigh-
borhoods {(UJ ,ϕJ )}, where ϕJ : UJ → Mk(n−k)(≈ Rk(n−k)) defined by
ϕ(B) = B ′

J .

(vi) Theorem. If M is a differentiable m-manifold and N is a differentiable n-
manifold, the M ×N is a differentiable (m +n)-manifold.

1.2.3 Differentiable functions on smooth manifolds

(i) Definition. Let M be a smooth manifold. A map f : W (⊂ M) → R, where
W is open, is said to be C∞ (or smooth) if each p ∈ W lies in a coordinate
neighborhood (U ,ϕ) such that f ◦ϕ−1 is C∞ on ϕ(W ∩V ).

(ii) Remark. A C∞ map as in the Definition above is continuous.

(iii) Examples of C∞ maps.

(a) The coordinate projections of a coordinate neighborhood (U ,ϕ) de-
fined by xi (q) =πi (ϕ(q)), for each q ∈U are C∞.

(b) If F ∈C∞(W ) and V ⊂W is open, then F |W ∈C∞(W ).

(c) If W = ∪αVα, where Vα is open and F ∈ C∞(Vα) for each α, then f ∈
C∞(W ).

(d) If f ∈C∞(W ) and (V ,ψ) is a coordinate neighborhood such that V ∩
W ̸= ;, then f ◦ψ−1 ∈C∞(ψ(V ∩W )).
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(iv) Definition. Let M and N be smooth manifold, and let F : W (⊂ M) → N ,
where W is open. Then f is said to be a C∞ (or smooth) mapping if for
each p ∈ W , there exists coordinate neighborhoods (U ,ϕ) of p and (V ,ψ)
of f (p) with f (U ) ⊂V such that ψ◦ f ◦ϕ−1 :ϕ(U ) →ϕ(V ) is C∞.

(v) Remark. C∞ mappings satisfy the following properties.

(a) They are continuous.

(b) The constructions in Examples (b)-(d) also hold true in the setting of
C∞ mappings.

(vi) Definition. Let M and N be smooth manifolds. A C∞ mapping f : M → N
is said to be a diffeomorphism if f is a homeomorphism and f −1 is C∞.

(vii) Remark.

(a) The relation of diffeomorphism between smooth manifolds is an equiv-
alence relation.

(b) Smooth manifolds with the same underlying topological manifolds
but incompatible C∞ structures can be diffeomorphic. For example,
consider the smooth structure (R, f ) on R, where f (t ) = t 3. Note that
f ∈C∞(R) and is a homeomorphism, but not a diffeomorphism since
f −1(t ) = 3

p
t ∉C 1(R). Furthermore, the smooth structures (R, i d) and

(R, f ) on R are not C∞ compatible. However, R with these two struc-
tures are diffeomorphic.

(c) It is a non-trivial fact that a topological manifold M can have non-
diffeomorphic C∞ structures. Milnor gave examples of non-diffeomorphic
C∞ structures on S7.

(viii) Definition. Let F : N → M be a differentiable mapping of smooth mani-
folds and let p ∈ N . Let (U ,ϕ) and (V ,ψ) be coordinate neighborhoods of
p and f (p) such that f (U ) ⊂ V . Then the rank of f at p is defined as the
rank of ψ◦ f ◦ϕ−1 :ϕ(U ) →ψ(V ).

(ix) Remark. The rank of f at p is the rank of the Jacobian matrix ofψ◦ f ◦ϕ−1

at ϕ(p).

(x) Theorem (Rank Theorem). Let F : N → M be a differentiable mapping
of smooth manifolds and let p ∈ N . Let dim(M) = m, dim(N ) = n, and
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rank( f ) = k at each point of N . Then there exists coordinate neighbor-
hoods (U ,ϕ) and (V ,ψ) of p and f (p) with f (U ) ⊂V such that:

(a) ϕ(p) = 0 ∈Rn , ϕ(U ) =C n
ϵ (0),

(b) ψ( f (p)) = 0 ∈Rm , ϕ(V ) =C m
ϵ (0), and

(c) (ψ◦ f ◦ϕ−1)(x1, . . . , xn) = (x1, . . . , xk ,0, . . . ,0).

(xi) Corollary. If f : N → M is a diffeomorphism, then dim(M) = dim(N ) =
rank( f ).

(xii) Definition. A C∞ mapping f : N → M between smooth manifolds is said
to be an immersion (resp. submersion) if rank( f ) = dim(N ) (resp. rank( f ) =
dim(M)).

(xiii) Remark.

(a) Since rank( f ) ≤ max(dim(M),dim(N )) at every point, it follows that if
f is an immersion (resp. submersion), then dim(M) ≤ dim(N ) (resp.
dim(M) ≥ dim(N )).

(b) If f : N → M is an injective immersion, then using the correspon-
dence N ↔ f (N ), f (N ) can be endowed with a topology and a C∞

structure from N under which f : N → f (N ) is a diffeomorphism.

(xiv) Definition. Let f : N → M is an injective immersion. Then f (N ) is called
an immersed submanifold of M .

(xv) Remark.

(a) Immersions need not be injective.

(b) Even when injective, an immersion need not define a homeomor-
phism onto its image.

(xvi) Definition. An injective immersion f : N → M that defines a homeomor-
phism f̃ : N → f (N ) onto its image is called an imbedding.

(xvii) Example of immersions.

(a) The map f : R→ R3 be defined by f (t ) = (cos(2πt ),sin(2πt ), t ) is an
imbedding whose image is an infinite helix on the unit infinite cylin-
der with the z-axis as axis.
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(b) The map f : R → R2 defined by f (t ) = (cos(2πt ),sin(2πt )) a (non-
injective) immersion whose image is the unit circle centered at the
origin.

(c) The map f : R→ R2 defined by f (t ) = (2cos(t −π/2),sin(2t −π)) a
(non-injective) immersion whose image is a figure-eight curve (also
known as a lemniscate).

(d) The map f ◦ g , where g (t ) = π+ 2tan−1(t ) and f as in example (c)
above, is an injective immersion that is not an imbedding.

(xviii) Theorem. Let f : N → M be an immersion. Then at each p ∈ N there exists
a neighborhhod U ∋ p such that f |U is an imbedding of U in M .

1.2.4 Submanifolds

(i) Definition. A subset N of a smooth m-manifold M is said to have the n-
submanifold property if each p ∈ N has a coordinate neighborhood (U ,ϕ)
on M such that: .

(a) ϕ(p) = 0 ∈Rn ,

(b) ϕ(U ) =C m
ϵ (0), and

(c) ϕ(U ∩N ) = {x ∈C m
ϵ (0) : xn+1 = . . . = xm = 0}.

If an N ⊂ M satisfies this property, then any coordinate neighborhood sat-
isfying (a) - (c) above is called a preferred coordinate neighborhood.

(ii) Lemma. Let M be a smooth m-manifold, and let N ⊂ M have the smooth
n-submanifold property. Then:

(a) N with the subspace topology is a topological n-manifold.

(b) Each coordinate neighborhood (U ,ϕ) on M defines a coordinate neigh-
borhood (U ∩N ,π◦ϕ|V ) on M and these coordinate neighborhoods
define an induced C∞ structure on N .

(c) Relative to the induced structure above, the inclusion N ,→ M is an
imbedding.

(iii) Definition.A regular submanifold N of a smooth m-manifold M is a sub-
space of M with the n-submanifold property and with C∞ structure that
the corresponding preferred coordinate neighborhoods determine on it.
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(iv) Theorem. Let N ′ and M be smooth smooth manifolds of dimensions n
and n respectively, and let f : N ′ → M be an imbedding. Then:

(a) N = f (N ′) has the n-submanifold property and is hence a regular
submanifold of M , and

(b) f defines a diffeomorphism f̃ : N ′ → N onto its image.

(v) Theorem. Let N ′ and M be smooth manifolds of dimensions n and m re-
spectively, and f : N ′ → M is an injective immersion. If N is compact, then
N = f (N ′) is a regular n-submanifold. Consequently, a compact subman-
ifold of M is regular.

(vi) Theorem (Regular Value Theorem). Let N and M be smooth manifolds
of dimensions n and m respectively, and f : N → M be a C∞ mapping. If f
has constant rank k on N , then for any q ∈ f (N ), f −1(q) is a closed regular
submanifold of N of dimension n −k.

(vii) Corollary. Let N and M be smooth manifolds of dimensions n and m
respectively, and f : N → M be a C∞ mapping. If m ≤ n and rank( f ) = m
at each point of A = f −1(a), then A is a closed regular submanifold of M
of dimension n −m.

(viii) Example of regular submanifolds.

(a) The smooth map f : Rn → R defined by f (x1, . . . , xn) = ∑n
i=1 x2

i . has
constant rank 1 on Rn \ {0}. Thus, by the Regular Value Theorem, the
unit sphere Sn−1 = f −1(0) is a submanifold of Rn \ {0}, and hence Rn

of dimension n −1.

(b) The smooth map f :R3 →R defined by

f (x1, x2, x3) =
(

a −
√

x2
1 +x2

2

)2

+x2
3 ,

where a > b > 0, has constant rank 1 at each point of the torus f −1(b2).
Thus, by the Corollary to the Regular Value Theorem, it follows that
the torus is a submanifold of R3 of dimension 2.
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1.3 Lie groups and their actions on manifolds

1.3.1 Lie groups

(i) Definition. Let G be a group and a smooth manifold. Then G is Lie group
if the group operation G ×G → G : (g ,h) 7→ g h and the inverse mapping
G →G : g 7→ g−1 are C∞ mappings.

(ii) Examples of Lie groups.

(a) The general linear group GL(n,R) is a Lie groups with respect to ma-
trix multiplication.

(b) C∗ = C \ {0} is a Lie group with respect to complex multiplication.
Note that C∗ is a smooth manifold with a differentiable structure
comprising single coordinate neighborhood (U ,ϕ), where U = C∗

and ϕ : C∗ →R2 defined by ϕ(x + i y) = (x, y).

(iii) Lemma. Let f : A → M be a C∞ mapping of C∞ manifolds. If f (A) ⊂ N ,
where N is a regular submanifold, then f is a C∞ mapping onto N .

(iv) Theorem. Let G be a Lie group and H <G be a regular submanifold. Then
with its differentiable structure as a submanifold, H is a Lie group.

(v) Theorem. If G1 and G2 are Lie groups, then G1 ×G2 is a Lie group with the
C∞ structure coming from the Cartesian product of the manifolds.

(vi) More examples of Lie groups

(a) By Theorem 2.1(iv) above, S1 ⊂ C∗ is a Lie group. Consequently, by
Theorem 2.1 (v), the n torus T n =∏n

i=1 S1 is a Lie group.

(b) The special linear group SL(n,R) = {A ∈ GL(n,R) : det(A) = 1} is a Lie
group of dimension n2 −1. This follows from the Regular Value The-
orem and Theorem 2.1(iv) since the C∞ mapping det : GL(n,R) →R∗

has constant rank 1 and SL(n,R) = det−1(1).

(c) The orthogonal group O(n,R) = {A ∈ GL(n,R) : A AT = In} is a Lie
group of dimension n(n −1)/2. This follows from the Regular Value
Theorem and Theorem 2.1(iv) since the C∞ mapping f : GL(n,R) →
GL(n,R) defined by f (A) = A AT has constant rank n(n + 1)/2 and
O(n,R) = f −1(In).
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(vii) Definition. Let G1 and G2 be Lie groups. We call an f : G1 →G2 a Lie group
homomorphism if:

(a) f is a homomorphism and

(b) f is a C∞ mapping.

(viii) Example of Lie group homomorphisms.

(a) The map det : GL(n,R) →R∗ is a Lie group homomorphism.

(b) The (covering) map p : R→ S1 defined by p(x) = e2πi x is a Lie group
homomorphism. By extension, pn : Rn → T n is a Lie group homo-
morphism.

(c) Consider the covering map p2 : R2 → T 2 from the preceding exam-
ple and a line Lα ⊂ R2 through the origin of irrational slope α given
by Lα = {(x,αx) : x ∈ R}. Then p2(Lα) is a dense subset of T 2. More-
over, p2|Lα : Lα → T 2 is an injective immersion. Thus, f (Lα) is an
immersed submanifold of T 2.

Moreover, if g :R→R2 is defined by g (t ) = (t ,αt ), then p2◦g :R→ T 2

is a Lie group homomorphism and (p2 ◦ g )(R) = p2(Lα) is Lie group.
However, p2(Lα) is neither closed or a regular submanifold of T 2.

(ix) Theorem. If f : G1 →G2 is a Lie group homomorphism, then:

(a) rank( f ) is constant and

(b) ker f is a closed regular submanifold of G1.

(x) Theorem. If H is a regular submanifold and a subgroup of a Lie group G ,
then H is a closed subset of G .

1.3.2 Lie group actions

(i) Definition. Let G be a Lie group, and X be a smooth manifold. Then G
acts smoothly on X (in symbols G æ X ) is there exists a C∞ mapping θ :
G ×X → X satisfying the following conditions.

(a) If e ∈G is the identity, then θ(e, g ) = g , for all g ∈G .

(b) If g1, g2 ∈G , then θ(g1,θ(g2, x)) = θ(g1g2, x), for all x ∈ X .

(ii) Notation

16



(a) We often write θ(g , x) in the definition above simply as g ·x or g x.

(b) For a fixed g ∈G , we denote by θg , the mapping x 7→ g x, for all x ∈G .

(iii) Remark. G æ X if and only if the map G → Diffeo(X ) defined by g 7→ θg is
a homomorphism.

(iv) Definition. Let G be a Lie group, and X be a smooth manifold. Then a
smooth action of G on X is effective (or faithful) if the homomorphism
g → θg is injective.

(v) Example of Lie group actions.

(a) Let H and G be Lie groups, and ψ : H → G a Lie group homomor-
phism. Then θ : H ×G → G defined by θ(h, x) =ψ(h)(x) is a smooth
action.

(b) The natural action of GL(n,R) on Rn is a smooth action which has a
unique fixed point {0}. Note that this is a transitive action on Rn \ {0}.

(c) If H < GL(n,R) and the inclusion H ,→ GL(n,R) is an immersion or
an imbedding, then restricted action of H on Rn is smooth. For ex-
ample, the restricted action of the subgroup

H =
{[

a b
0 a

]
∈ GL(2,R) : a > 0

}
,

which is a two-dimensional regular submanifold of GL(2,R), on R2,
is smooth.

(d) The Lie group G = Isom(Rn) ∼= O(n,R)×Rn of rigid motions in Rn acts
smoothly on Rn and this action is given by θ : G ×Rn → Rn , where
θ((A,b), x) = Ax +b.

(e) The group GL(n,R) acts transitively on the set B of bases of Rn (also
known as the space of n-frames of Rn). Given a basis f = { f1, . . . , fn}
of Rn , there exists a unique matrix in GL(n,R) that maps the stan-
dard basis e = {e1, . . . ,en} to f . Thus, there is a correspondence B ↔
GL(n,R), which is a diffeomorphism. Hence, B is a smooth manifold
and the action of GL(n,R) on B is smooth.

(f) The Lie group O(n,R) acts on Rn smoothly and the orbits of this ac-
tion are concentric spheres centered at the origin. Thus, Rn/O(n) ≈
[0,∞) which is not a smooth manifold.
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(vi) Theorem. Let G be a Lie group and H <G in an algebraic subgroup. Then
the map G → G/H is continuous and open. Furthermore, G/H is Haus-
dorff if and only if H is closed.

(vii) Definition. The action of a Lie group G on a manifold X is said to be free
if g · x = x for any g ∈G and x ∈ X , then it would imply that g = e.

1.3.3 Discrete groups and properly discontinuous actions

(i) Definition. A discrete group Γ is a countable group with the discrete topol-
ogy.

(ii) Remark. A discrete group is a zero-dimensional Lie group.

(iii) Definition. A discrete group Γ is said to act properly discontinuously on a
manifold M̃ if the action is C∞ satisfying the following conditions.

(a) Each x ∈ M̃ has a neighborhood U ∋ x such that {h ∈ Γ : h(U )∩U ̸= ;}
is finite.

(b) If x, y ∈ M̃ are not in the same orbit, then there exists neighborhoods
U ∋ x and V ∋ y such that U ∩Γ(V ) =;.

(iv) Remark. If a discrete group Γ acts properly discontinuously on a manifold
M̃ , then M̃/Γ is Hausdorff.

(v) Definition. Let M̃ and M be smooth manifolds, and let π : M̃ → M be a
smooth and surjective map. The π is said to be a covering map if at each
p ∈ M there exists a connected neighborhood U ∋ p such that:

(a) π−1(U ) =⊔αVα, where Vα is open, and

(b) for each α, π|Vα : Vα→U is a diffeomorphism.

A neighborhood U satisfying properties (a) and (b) is a called an evenly
covered neighborhood. If there exists a covering map π : M̃ → M , then the
manifold M̃ is said to be a covering manifold of M .

(vi) Theorem. Let Γ be discrete group that acts freely and properly discontin-
uously on a manifold M̃ , there exists a unique C∞ structure on M = M̃/Γ
such that M̃ is a covering manifold of M .
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(vii) Remark. The rank of a covering map π : M̃ → M equals dim(M) = dim(M̃)
since it is a local diffeomorphism.

(viii) Lemma Let G be a Lie group and Γ an algebraic subgroup of G . Then
there exists a neighborhood U ∋ e such that Γ∩U = {e} if and only if Γ is a
discrete subspace, in which case Γ= Γ.

(ix) Theorem. Any discrete subgroup Γ of a Lie group G acts freely and prop-
erly discontinuously on G by left multiplication.

(x) Corollary. If Γ is a discrete subgroup of a Lie group G , then G/Γ is a C∞

manifold and π : G →G/Γ is smooth.

(xi) Theorem. Let π : M̃ → M be the covering of a smooth manifold M by a
connected smooth manifold M̃ . Then the group of deck transformations

Deck(π) := { f ∈ Diffeo(M̃) : f ◦π=π}

acts freely and properly discontinuously on M̃ and the quotient map π1 :
M̃ → M̃/Deck(p) is a covering map. If Deck(π) acts transitively on the
fibers of π, then π1 and M̃/Deck(π) can be naturally identified with π and
M , respectively.

(xii) Examples of discrete group actions.

(a) The actionZ2×Sn → Sn defined by ([1], x) 7→ −x is a free and properly
discontinuous action and under this action, Sn/Z2 ≈ RP n . Thus, by
Theorem 1.3.3 (xi), it follows that the quotient map Sn → RP n is a
covering map and Sn is a covering manifold of RP n .

(b) The action Zn ×Rn →Rn defined by

((k1, . . . ,kn), (x1, . . . , xn)) 7→ (x1 +k1, . . . , xn +kn)

is a free and properly discontinuous action and under this action,
Rn/Zn ≈ T n = ∏n

i=1 S1. Thus, by Theorem 1.3.3 (xi), it follows that
the quotient map Rn → T n is a covering map and Rn is a covering
manifold of T n .

19



2 Vector fields on manifolds

2.1 Tangent space at a point on a manifold

(i) Definition. Let M be a smooth manifold. Given any p ∈ M consider the
collection

Cp = { f : U (⊂ M) →R : f ∈C∞(U ),U is open, and

U contains a neighborhood of p}.

Define an equivalence relation on Cp given by f ∼ g if f and g agree on
some neighborhood of p. Then C ∞(p) :=Cp / ∼ is called algebra of germs
of C∞ functions at p.

(ii) Remark. Given a coordinate neighborhood (U ,ϕ) of p ∈ M , the induced
algebra homomorphismϕ∗ : C ∞(ϕ(p)) →C ∞(p) defined byϕ∗( f ) = f ◦ϕ
is an isomorphism of algebras of germs of C∞ functions.

(iii) Definition. The tangent space Tp (M) to M at p is the set of all mappings
{C ∞(p) → R} satisfying the following conditions for all α,β ∈ R, f , g ∈
C ∞(p), and Xp ,Yp ∈ Tp (M) .

(a) Xp (α f +βg ) =αXp ( f )+βXp (g ). (Linearity)

(b) Xp ( f g ) = Xp ( f )g (p)+ f (p)Xp (g ). (Leibnitz rule)

(c) The vector space operations:

(1) (Xp +Yp )( f ) = Xp ( f )+Yp ( f ).

(2) (αXp )( f ) =αXp ( f ).

A tangent vector to M at p ∈ M is any Xp ∈ Tp (M).

(iv) Theorem. Let F : M → N be a C∞ map of smooth manifolds, and let p ∈
M . Then:

(a) The map F∗ : C ∞( f (p)) →C ∞(p) defined by F∗( f ) = f ◦F is an alge-
bra homomorphism.

(b) The homomorphism F∗ the induces a dual homomorphism F∗ : Tp (M) →
TF (p)(N ) defined by F∗(Xp )( f ) = Xp (F∗( f )).

(v) Corollary.
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(a) If F : M → M is the identity map on a smooth manifold M , then both
F∗ and F∗ are identity isomorphisms.

(b) If H =G ◦F is a composition of C∞ maps on smooth manifolds, then
H∗ = F∗ ◦G∗ and H∗ =G∗ ◦F∗.

(vi) Corollary. If F : M → N is a diffeomorphism of smooth manifold M onto
an open set of a smooth manifold N , then each p ∈ M , the homomor-
phism F∗ : Tp (M) → TF (p)(N ) is an isomorphism.

(vii) Remark. Let M be a smooth n-manifold and let (U ,φ) be a coordinate
neighborhood of p ∈ M . Then by Corollary 2.1 (vi), φ induces an iso-
morphism ϕ∗ : Tp (M) → Tϕ(p)(Rn) at each p ∈ U . Consequently, ϕ∗ :
Tϕ(p)(Rn) → Tp (M) is an isomorphism and for 1 ≤ i ≤ n, the images Ei p =
ϕ−1∗

(
∂
∂xi

)
of the natural basis at ϕ(p) ∈ϕ(U ) determines a basis of Tp (M).

(viii) Corollary. Let M be a smooth n-manifold.

(a) To each coordinate neighborhood (Uϕ) of a smooth n-manifold M ,
there corresponds a natural basis E1p , . . . ,Enp of Tp (M), for all p ∈U .
Consequently,

dim(Tp (M)) = n = dim(M).

(b) Let f be a C∞ function defined on a neighborhood of p and let f̂ =
f ◦ϕ−1 be its expression in local coordinates relative to (U ,ϕ). Then:

Ei p ( f ) =
(
∂ f̂

∂xi

)
ϕ(p)

.

(c) In particular, if xi (q) is the i th coordinate function, then:

Xp =
n∑

i=1
(Xp (xi ))Ei p .

(ix) Remark. Let M be a smooth n-manifold and let (U ,φ) be a coordinate

neighborhood of p ∈ M . Since Ei p =ϕ−1∗
(
∂
∂xi

)
, we have:

Ei p ( f ) =ϕ−1
∗

(
∂

∂xi

)
( f ) = ∂

∂xi
( f ◦ϕ−1)

∣∣∣∣
x=ϕ(p)

.
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In particular , if f (q) = xi (q) and Xp =
n∑

j=1
α j E j p , then we have

Xp (xi ) =
n∑

j=1
α j (E j p (xi )) =

n∑
j=1

α j

(
∂xi

∂x j

)
ϕ(p)

=αi .

(x) Theorem. Let M and N be smooth manifolds of dimensions m and n, re-
spectively, and let F : M → N be a smooth map. Let (U ,ϕ) and (V ,ψ) be
coordinate neighborhoods such that F (U ) ⊂ V , and in these coordinates
let F be given by yi = f (x, . . . , xn), 1 ≤ i ≤ m. Let p be a point with coordi-

nates a = (a1, . . . , an), Ei p = ϕ−1∗
(
∂
∂xi

)
, 1 ≤ i ≤ m be a basis of Tp (M), and

Ẽ j F (p) =ϕ−1∗
(
∂
∂y j

)
, 1 ≤ j ≤ n, be a basis of TF (p)(N ). Then:

(a) For 1 ≤ i ≤ n, we have:

F∗(Ei p ) =
m∑

j=1

(
∂y j

∂xi

)
a

Ẽ j F (p).

(b) In terms of components, if Xp =
n∑

i=1
αi Ei p and F∗(Xp ) =

m∑
j=1

Ẽ j F (p),

then for 1 ≤ j ≤ m, we have:

β j =
n∑

i=1
αi

(
∂y j

∂xi

)
a

.

(xi) Remark. Let M be a smooth submanifold of N , and let F : M → N be an
immersion or an inclusion of M into N . Then we have rank(F ) = dim(M),
and hence, F∗ : Tp (M) → Tp (N ) is injective (i.e, an isomorphism onto its
image). Consequently, Tp (M) can be identified with a subspace of Tp (N ).

(xii) Applications of Theorem 2.1 (x).

(a) Change of basis formula for Tp (M). We apply Theorem 2.1 (x) to the
maps F = ϕ̃◦ϕ−1 and F−1, which give the change of coordinates be-
tween the coordinate neighborhoods (U ,ϕ) and (Ũ ,ϕ̃) in U ∩Ũ on

M . For p ∈U ∩Ũ , let Ei p =ϕ−1∗
(
∂
∂xi

)
and Ẽi p = ϕ̃−1∗

(
∂
∂x̃i

)
be the bases
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of Tp (M) corresponding to (U ,ϕ) and (Ũ ,ϕ̃), respectively. Then we
have:

Ei p = ∑
k

(
∂x̃k

∂xi

)
ϕ(p)

Ẽkp ,1 ≤ i ≤ n, and

Ẽ j p = ∑
ℓ

(
∂xℓ
∂x̃ j

)
ϕ̃(p)

Ẽℓp ,1 ≤ ℓ≤ n.

In particular, if:

Xp =
n∑

i=1
αi Ei p =

n∑
j=1

β j Ẽ j p ,

then:

αi =
n∑

j=1
β j
∂xi

∂x̃ j
and β j =

n∑
i=1

αi
∂x̃ j

∂xi
.

(b) Tangent to a space curve. Let F : (a,b) → N be a C∞ curve. Then

for t0 ∈ (a,b), we have
(

d
d t

)
t0

is a basis for Tt0 (M). If p = F (t0) and

f ∈C ∞(p), then

F∗
(

d

d t

)
( f ) =

(
d

d t
( f ◦F )

)
t0

,

which is called the to the curve F (t ) at p. In particular, if (U ,ϕ) are
the coordinates around p, then in local coordinates F is given by:

F̂ (t ) = (ϕ◦F )(t ) = (x1(t ), . . . , xn(t ),

where each xi is a function on U . To simplify notation, we write
xi (t ) = (xi ◦F )( f ), and we have:

F∗
(

d

d t

)
(xi ) =

(
d xi

d t

)
t0

:= ẋi (t0).

Applying Theorem 2.1 (x) (with E1p = d
d t and the Es replaces with Ẽs),

we have:

F∗
(

d

d t

)
=

n∑
i=1

ẋi (t )Ei p .

When N =Rn , d
d t is the velocity vector at the point p = (x1(t0), . . . , xn(t0))

whose components (at p) are (ẋ1(t0), . . . , ẋn(t0)). This is the vector
vp ∈ Tp (Rn) with initial point p = x(t0) and terminal point

(x1 + ẋ1(t0), . . . , xn + ẋn(t0)).
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If rankt0 (F ) = 1, then F∗ is an isomorphism onto its image, and we
identify the tangent space to the image curve at p with the subspace
of Tp (Rn) spanned by vp . On the other hand, if rankt0 (F ) = 0, then

F∗
(

d
d t

)
= 0.

2.2 Vector fields

(i) Definition. A vector field X of class C r on a smooth manifold M is a map-
ping X : M → T (M) = ∪p∈M Tp (M) that assigns to each p ∈ M a vector
Xp ∈ Tp (M) whose components in the local frames {E1p , . . . ,Enp } of any
coordinate neighborhood (U ,ϕ) of p are of class C r on U .

(ii) Examples of vector fields.

(a) The unit gravitational vector field G on M = R3 − {0} of an object of
unit mass at 0 is a smooth mapping G : M → T (M) defined by

G(p) =
3∑

i=1
−xi

r 3

∂

∂xi

∣∣∣∣∣
p

,

where r =
√

x2
1 +x2

2 +x2
3 .

(b) Given any coordinate neighborhood (U ,ϕ) on a smooth manifold M ,

for each 1 ≤ i ≤ n, Ei =ϕ−1∗
(
∂
∂xi

)
having component δi j is a C∞ vec-

tor field on U . The set {E1, . . . ,En} form a basis for Tp (M) at each
p ∈U called the coordinate frame associated to (U ,ϕ).

(c) It is known there non-vanishing C∞ vector fields on even-dimensional
spheres, while odd-dimensional spheres have at least one non-vanishing
vector field. For example on

S3 = {(x1, x2, x3, x4) :
4∑

i=1
x2

i = 1},

there are three mutually perpendicular unit vector fields given by:

X = −x2
∂

∂x1
+x1

∂

∂x2
+x4

∂

∂x3
−x3

∂

∂x4

Y = −x3
∂

∂x1
−x4

∂

∂x2
+x1

∂

∂x3
+x2

∂

∂x4

Z = −x4
∂

∂x1
+x3

∂

∂x2
−x2

∂

∂x3
+x1

∂

∂x4

24



(iii) Definition. A smooth manifold M with a C∞-vector field of bases is said
to be parallelizable.

(iv) Lemma. Let N be a submanifold of M , and let X be a C∞-vector field on
M such that for each p ∈ N , Xp ∈ Tp (N ). Then X |N is a C∞-vector field.

(v) Remark. Let N , M be smooth manifolds, and let F : N → M be a smooth
map. Then given a vector field X on N , F∗(Xp ) is a vector at TF (p)(M).
However, this process does not in general induce a vector field on M . This
is because:

(a) F need not be surjective and

(b) even when F is surjective, there might exist p1, p2 ∈ N with F (pi ) = q
such that F∗(Xp1 ) ̸= F∗(Xp2 ).

(vi) Definition. Let N , M be smooth manifolds, and let F : N → M be a smooth
map. Suppose there exists a vector field Y on M such that for each q ∈ M
and p ∈ F−1(q) ∈ N , we have F∗(Xp ) = Xq . Then we say that the vector
fields X and Y are F -related and we write Y = F∗(X )

(vii) Theorem. If F : N → M is a diffeomorphism, then each vector field X on
N is F -related to a uniquely determined vector field Y on M .

(viii) Definition. Let M be a smooth manifold and F : M → M be a diffeomor-
phism. Then X is said to be F -invariant if F∗(X ) = X .

(ix) Definition. Let G be a Lie group and for a fixed g ∈ G , let Lg : G → G be
left multiplication by g , that is, Lg (h) = g h, for all h ∈ G . Then a vector
field X on G is a said to left-invariant (or invariant under left translations)
if (Lg )∗(X ) = X for all g ∈G .

(x) Theorem. Let G be a Lie group and e ∈ G be the identity element. Then
each Xe ∈ Te (G) determines a unique C∞-vector field X on G that is left-
invariant. In particular, G is parallelizable.

(xi) Corollary. Let G1 and G2 be Lie groups and F : G1 → G2 be a homo-
morphism. Then to each left-invariant vector field X on G1, there ex-
ists a uniquely determined left-invariant vector field Y on G2 such that
F∗(X ) = Y .
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2.3 Flows on manifolds

(i) Definition. Let θ :R→ Diffeo(M) defined by θ(t ) = θt be a C∞-action on a
smooth manifold M . Then θ defines a C∞-vector field X θ on M given by
X θ(p) = X θ

p , where Xpθ : C ∞(p) →R is defined by

X θ
p ( f ) = lim

∆t→0
[ f (θ∆t (p))− f (p)].

The vector field X θ is called the infinitesimal generator of θ.

(ii) Definition. Let θ : G → Diffeo(M) defined by θ(g ) = θg be a C∞-action on
a smooth manifold M . Then a vector field X on M is said to G-invariant if
(θg )∗(X ) = X for all g ∈G .

(iii) Theorem. Let θ : R→ Diffeo(M) defined by θ(t ) = θt be a C∞-action on a
smooth manifold M . Then X θ is invariant under θ, that is, (θt )∗(X θ) = X θ,
for all t ∈R.

(iv) Corollary. Let θ : R→ Diffeo(M) defined by θ(t ) = θt be a C∞-action on a
smooth manifold M . If Xp = 0, then for each q in the orbit of p, we have
Xq = 0.

(v) Theorem. Let θ : R→ Diffeo(M) defined by θ(t ) = θt be a C∞-action on
a smooth manifold M . The orbit of p given is either a single point or an
immersion of R in M by the map t 7→ θt (p) depending on whether or not
Xp = 0.

(vi) Remark. Let θ : R→ Diffeo(M) defined by θ(t ) = θt be a C∞-action on a
smooth manifold M . For t0 ∈ R, let d

d t be standard basis of Tt0 (R), and let
F (t ) = θt (p). Since we have

F∗
(

d

d t

)
= Xθt0

(p) = XF (t0),

it follows that at each p ∈ M , Xp is tangent to orbit of p and is the velocity
vector to t → F (t ) in M .

(vii) Definition. Given a vector field X on a smooth manifold M , we say that a
curve F : (a,b) → M is an integral curve of X if dF

d t = XF (t ) for all t ∈ (a,b).

(viii) Remark. Let θ : R× M → M be a C∞-action on a smooth manifold M .
Then each orbit of θ is an integral curve of X θ, that is, θ̇(t , p) = Xθ(t ,p).
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(ix) Examples of R-actions.

(a) Let M = R2, and θ : R×M → M be defined by θ(t , (x, y)) = (x + t , y).
Then X θ = ∂

∂x .

(b) If M ′ = R2 \ {(0,0)}, then the θ from (a) does not restrict to an action
on M ′. However, if we consider the open set W ⊂R×M ′ given by

W =
( ⋃

y ̸=0
R× {(x, y)}

)
∪ {(t , (x,0)) : x(x + t ) > 0},

then θ′ = θ|W preserves most of the properties of θ.

(x) Definition Let M be a smooth manifold and W ⊂ R× M be an open set
such that for each p ∈ M , there exists real numbers α(p) < 0 < β(p) such
that

W ∩ (R× {p}) = (α(p),β(p))× {p},

so that
W = ⋃

p∈M
(α(p),β(p))× {p}.

Then a local one-parameter action (or a flow) on M is a C∞ map θ : W → M
such that:

(a) θ0(p) = p for all p ∈ M .

(b) If (s, p) ∈W , we have:

(1) α(θs(p)) =α(p)− s,

(2) β(θs(p)) =β(p)− s, and

(3) for any t ∈ (α(p)− s,β(p)− s), we have θt+s(p) = θt ◦θs(p).

(xi) Remark. Let θ : W → M be a flow on a smooth manifold M .

(a) Since W is open and (0, p) ∈ W , there exists a neighborhood U ∋ p
such that (−δ,δ)×U ⊂ W for sufficiently small δ. Thus, θ also has a
well-defined infinitesimal generator X θ associated to it.

(b) θ satisfies θ−1
t = θ−t , wherever it is well-defined. In general, θt need

not define a map on all of M .

(c) Let Vt ⊂ M be the domain of definition of θt , that is, Vt = {p ∈ M :
(t , p) ∈W }. For all p ∈Vt , we have (θt )∗(X θ

p ) = Xθt (p).
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(d) The curve defined F (t ) = θt (p), for t ∈ (α(p),β(p)) is a C∞ curve,
which is an immersion of (α(p),β(p)) if Xp ̸= 0, and is a single point,
if Xp = 0.

(xii) Theorem. Let θ : W → M be a flow on a smooth manifold M and let Vt ⊂ M
be the domain of definition of θt , that is, Vt = {p ∈ M : (t , p) ∈W }. Then:

(a) Vt is an open set for all t and

(b) θt : Vt →V−t is a diffeomorphism with θ−1
t = θ−t .

(xiii) Theorem. Let θ : W → M be a flow on a smooth manifold M and let X θ

be its associated infinitesimal generator. If p ∈ M is such that X θ
p ̸= 0, then

there exists a coordinate neighborhood (V ,ψ) around p, a v >, and a corre-
sponding neighborhood V ′ ∋ p with V ′ ⊂V such that in local coordinates
θ|(−v,v)×V ′ is given by (t , y1, . . . , yn) → (y1 + t , y2, . . . , yn). Moreover, in these

coordinates, we have X =ψ−1∗
(
∂
∂x1

)
for every point of V ′.

2.4 Existence of integral curves

(i) Theorem. Suppose that for 1 ≤ i ≤ n, fi (t , x, . . . , xn) are C r functions on
(−ϵ,ϵ)×U , where r ≥ 1 and U ⊂ Rn is open. Then for each x ∈ U , there
exists δ> 0 and a neighborhood V ∋ x with V ⊂U such that:

(a) For each a = (a1, . . . , an) ∈V , there exists an n-tuple of C r+1 functions
x(t ) = (x1(t ), . . . , xn(t )) with xi : (−δ,δ) →U satisfying the first-order
system of ODEs:

d xi

d t
= fi (t , x), 1 ≤ i ≤ n (*)

with initial conditions

xi (0) = ai , 1 ≤ i ≤ n. (**)

(b) For each a = (a1, . . . , an) ∈V , the xi (t ) are uniquely determined in the
sense that any other function x̄i (t ) satisfying (∗) and (∗∗) must agree
with x(t ) on an open interval around t = 0.

(c) As the functions xi (t ) are uniquely determined by a = (a1, . . . , an) ∈
V , we can write them as xi (t , a1, . . . , an) for 1 ≤ i ≤ n, in which case
they are of class C r in all the variable and determine a C r map (−δ,δ)×
V →U .
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(ii) Definition. If the right hand side of equation (∗) in Theorem 2.4(i) above
is independent of t , then we say that the system of ODEs is autonomous.

(iii) Remark. Consider an autonomous system of ODEs as in Theorem 2.4(i),
where the fi depend only on (x1, . . . , xn).

(a) Define on U ⊂ Rn a C∞ vector field X by X = ∑n
i=1 fi (x) ∂

∂xi . An inte-

gral curve of X is a smooth mapping F : (α,β) →U such that Ḟ (t ) =
XF (t ) for all x ∈ (α,β). Since F (t ) = (x1(t ), . . . , xn(t )), we have:

Ḟ (t ) = XF (t ) ⇐⇒ d xi

d t
= fi (x1(t ), . . . , xn(t )), 1 ≤ i ≤ n,

that is, x(t ) = (x1(t ), . . . , xn(t )) are a solution of equation (∗).

(b) By Theorem 2.4(i), for each a in a neighborhood V ∋ x, there exists a
unique F (t ) satisfying F (0) = a and F : (−δ,δ) →U for every a ∈V .

(c) If F (t , a) = (x1(t , a), . . . , xn(t , a)), then ẋi (t , a) = fi (x(t , a)) and xi (0, a) =
ai , where each is xi is C∞ on ((−δ,δ)×V ), an open subset of R×U .

(iv) Theorem. Let X be a C∞ vector field on a smooth manifold M . Then:

(a) For each p ∈ M , there exists a neighborhood V and a real number
δ> 0 such that there exists a C∞ mapping:

θV : (−δ,δ)×V → M

satisfying
θ̇V (t , q) = XθV (t ,q)

and θV (0, q) = q for all q ∈V .

(b) If F (t ) is an integral curve of X with F (0) = q ∈V , then F (t ) = θV (t , q),
for all |t | < δ. In particular, this mapping is unique in the sense that if
(V1,δ1) is another such pair for p ∈ M , then θV = θV1 on the common
part of their domains.

(v) Theorem. Let X be a C∞ vector field on a smooth manifold M . Then for
each p ∈ M , there exists a uniquely determined open interval (α(p),β(p))
having the following properties:

(a) There exists a C∞ integral curve F (t ) defined on (α(p),β(p)) such
that F (0) = p.
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(b) If G is another integral curve with G(0) = p, then the interval of defi-
nition of G is contained in (α(p),β(p)) and F (t ) ≡G(t ) on this inter-
val.

(vi) Remark. Let X be a C∞ vector field on a smooth manifold M . By Theo-
rem 2.4 (v), two curves of X defined on open intervals I1 and I2 that co-
incide on I1 ∩ I2 ̸= ;, define an integral curve on I1 ∪ I2. So, let F (t ) =
θX (t , p) be the unique maximal integral curve such that F (0) = p and let
W =⋃

p∈M (α(p),β(p))× {p}. Then:

(a) W and θX are uniquely determined by X , and W is the domain of θX .

(b) W and θX satisfy the following properties.

(1) We have {0}×M ⊂W and θX (0, p) = p for all p ∈ M .

(2) For each p ∈ M , if θX
p (t ) = θX (t , p), then θX

p : (α(p),β(p)) → M is
C∞ maximal integral curve.

(3) For each p ∈ M , there exists a neighborhood V ∋ p and a δ > 0
such that (−δ,δ)×V ⊂W and θX is C∞ on (−δ,δ)×V .

(vii) Corollary. In the notation of Remark 2.4 (vi) above, let s ∈ (α(p),β(p))
and q = θX

p (s) = θX (s, p) be the corresponding point of the integral curve
determined by p. Then:

(a) α(q) =α(p)− s and β(q) = β(p)− s. Thus, t ∈ (α(q),β(g )) if and only
if t + s ∈ (α(p),β(p)) and

(b) θX (t ,θX (s, p)) = θX (t + s, p).

(viii) Theorem. Let X be a C∞ vector field on a smooth manifold M . Then:

(a) The domain W of θX is open in R×M and

(b) θX is C∞ onto M .

(ix) Definition. Let M be a smooth manifold, and for i = 1,2, let θi : Wi → M
be one-parameter group actions (or flows) on M . Then we say θ1

∼= θ2 if
θ2(x) = θ2(x) for all x ∈W1 ∩W2.

(x) Theorem. Let M be a smooth manifold.

(a) For i = 1,2, let θi : Wi → M be one-parameter group actions (or flows)
on M . Then: θ1

∼= θ2 if and only if X θ1 = X θ2 .
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(b) Furthermore, every C∞ vector field X is the infinitesimal generator
of a unique flow θX : W → M (called the maximal flow generated by
X ) whose domain W is maximal among all θ̃ ∼= θ.

(xi) Lemma. Let θX : W → M be the flow with maximal domain W and in-
finitesimal generator X acting on a smooth manifold M . For p ∈ M , let
θX

p : (α(p),β(p)) → M defined by θX
p (t ) = θX (t , p) be the integral curve

of X through p. If β(p) < ∞ and {tn} ⊂ (α(p),β(p)) is a sequence such
that tn → β(p), then {θX (tn , p)} cannot lie on a compact set. In particular,
{θX (tn , p)} cannot approach a limit in M . A similar statement holds for
α(p) with α(p) <∞.

(xii) Corollary. Let θX : W → M be the flow with maximal domain W and in-
finitesimal generator X acting on a smooth manifold M . For p ∈ M , let
θX

p : (α(p),β(p)) → M defined by θX
p (t ) = θX (t , p) be the integral curve of

X through p.

(a) If (α(p),β(p)) is a bounded interval, then the integral curve {θX
p (t ) :

t ∈ (α(p),β(p))} is a closed subset of M .

(b) If Xp = 0, then (α(p),β(p)) =R and if X = 0 outside a compact subset
of M , then W =R×M .

(xiii) Definition. A C∞ vector field X on a smooth manifold M is complete if it
generates a global action of R on M , that is, the domain of θX is R×M .

(xiv) Corollary. If M is a compact smooth manifold, then every vector field on
M is complete.

(xv) Theorem. Let X be a C∞ vector field on a smooth manifold M and let
F : M → M be a diffeomorphism. Then θX : W → M be the maximal flow
generated by X . Then X is invariant under F if and only if F (θ(t , p) =
θ(t ,F (p)), whenever both sides are well-defined.

(xvi) Remark. The main assertion in Theorem 2.4 (xv) can equivalently stated
as F∗(X ) = X if and only if θt ◦F = F ◦θt for all t ∈Vt .

(xvii) Corollary. A left invariant vector field on a Lie group G is complete.
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2.5 One-parameter subgroups

(i) Definition. Let G be a Lie group. A one-parameter subgroup of G is the
image F (R of some Lie group homomorphism F :R→G .

(ii) Remark. Let G be Lie group and let F : R→ G be a Lie group homomor-
phism. Ifϕ : G×M → M is an action of G on M , thenϕ induces anR-action
ϕF :R×M → M on M via F defined by ϕF (t , p) =ϕ(F (t ), p).

(iii) Example of one-parameter actions.

(a) Let G = GL(3,R). Consider the homomorphism F1 :R→G defined by

F1(t ) =
eat 0 0

0 eat 0
0 0 eat

 ,

and homomorphism F2 :R→G be defined by

F2(t ) =
1 at bt + 1

2 act 2

0 1 ct
0 0 1

 .

Since GL(3,R) has a natural action on R3, by Remark 2.5 (ii), each Fi

induces an action of R on R3. For example F1 induces that action
θ1(t , x1, x2, x3) = (eat x1,eat x2,eat x3) with X θ

x = θ̇(a, x) =∑3
i=1 axi

∂
∂xi

.

(b) Consider the homomorphism F :R→ SO(3) defined by

F (t ) =
 cos(at ) sin(at ) 0
−sin(at ) cos(at ) 0

0 0 1

 .

Since SO(3) acts on S2 by rotations, the action induces an R-action θ

on S2 (via F ), which defines a one-parameter group of rotations about
the x3-axis given by:

θ(t , x1, x2, x3) = (x1 cos(at )+x2 sin(at ),−x1 sin(at )+x2 cos(at ), x3).

The orbits under this action are the latitudes of S2 and X θ is tangent
to them and orthogonal to the x3-axis.
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(c) A Lie group acts on itself by right translation (multiplication) defined
by ϕ : G → Diffeo(G) given by ϕ(a) = Ra . Then ϕ induces an R-action
θ :R×G →G via a homomorphism F :R→G given by

θ(t , g ) = RF (t )(g ) = g F (t ).

(iv) Theorem. Let F :R→ g be a one-parameter subgroup of a Lie group G and
let X be left-invariant vector field on G defined by Xe = Ḟ (0). Then θ(t , g ) =
RF (t )(g ) defines an action θ : R×G → G such that X θ = X . Conversely, let
X be a left-invariant vector field and θ : R×G → G be the corresponding
flow generated by X . Then F (t ) = θ(t ,e) is a one-parameter subgroup of G
such that θ(t , g ) = RF (t )(g ).

(v) Corollary. Let G be a Lie group.

(a) There is a one-to-one correspondence between the elements of Te (G)
and the one-parameter subgroups of G .

(b) For Z ∈ Te (G), let {F (t , Z ) : t ∈ R}, where t 7→ F (t , Z ), be the unique
corresponding one-parameter subgroup of G . Then R×Te (G) →G is
C∞ and satisfies F (t , sZ ) = F (st , Z ).

2.6 One-parameter subgroups of Lie groups

(i) Definition. The exponential e X of a matrix X ∈ Mn(R) is defined by:

e X = 1+ X

1!
+ X 2

2!
+ . . . , (†)

whenever the series converges.

(ii) Theorem. Consider the series (†) in Definition 2.6 (i) above.

(a) The series converges absolutely for all X ∈ Mn(R) and uniformly on
all compact subsets of MnR).

(b) The mapping exp : Mn(R) → Mn(R) defined by exp(A) = e t A is C∞

and Im exp ⊂ GL(n,R).

(c) If A,B ∈ Mn(R) such that AB = B A, then exp(A+B) = exp(A)exp(B).

(iii) Corollary. For an A ∈ Mn(R), consider the map F : R→ GL(n,R) defined
by F (t ) = e t A.
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(a) F (R) is an one-parameter subgroup ofRwhose corresponding vector
field is given by ∑

i , j
ai j

(
∂

∂xi j

)
In

.

(b) All one parameter subgroups are of this form. Moreover, Ḟ (0) = A =
(ai j ).

(iv) Theorem. Let G be a Lie group and let H < G be a Lie subgroup. Then
the one parameter subgroups of H are those one-parameter subgroups
F (R) <G such that Ḟ (0) ∈ Te (H) considered as a subspace of Te (G).

(v) Corollary. Let G =GL(n,R) and let H <G be a Lie subgroup.

(a) The one-parameter subgroups H are all of form F (R), where F (t ) =
e t A.

(b) Moreover the entries of A = (ai j ) are components of the vector

Ḟ (0) =∑
i , j

ai j

(
∂

∂xi j

)
e

∈ Te (G),

which is tangent to H at e.

(vi) Examples of one-parameter subgroups.

(a) If A =
0 a b

0 0 c
0 0 0

 ∈ Mn(R), then

e t A =
1 t a 1

2 act 2

0 1 tc
0 0 1

 ∈ GŁ(n,R).

(b) Consider H = O(n) <G = GL(n,R). Then

o(n) = {A ∈ Mn(R) : e t A ∈ H ,∀t } = {A ∈ Mn(R) : AT =−A}.

Hence, dim(o(n)) = n(n−1)/2. A neighborhood of O ∈ o(n) is mapped
diffeomorphically by X 7→ ex to a neighborhood of In ∈ O(n).
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(vii) Definition. The exponential mapping exp : Te (G) →G is given by exp(Z ) =
F (1, Z ), where for Z ∈ Te (G), t 7→ F (t , Z ) is unique one-parameter sub-
group determined by Z .

(viii) Theorem. Let G be a Lie group.

(a) The exponential mapping exp : Te (G) →G is C∞.

(b) For Z ∈ Te (G), let {F (t , Z ) : t ∈ R}, where t 7→ F (t , Z ), be the unique
one-parameter subgroup of G such that Ḟ (0) = Z .

(c) The Jacobian matrix of exp at 0 is the identity matrix, that is, exp∗ is
the identity.

(d) If G is a Lie subgroup of GL(n,R), then for each Z ∈ Te (G), there exists
A = (ai j ) ∈ Mn(R) such that

Z =∑
i , j

ai j

(
∂

∂xi j

)
e

.

Moreover, for this Z , we have exp(t Z ) = e t A.

2.7 Lie algebra of vector fields

(i) Notation. Let M be a smooth manifold. We denote by X(M), the module
over C∞(M) of all C∞ vector fields on M .

(ii) We say a vector space L over R is a (real) Lie algebra if in addition to its
vector space structure, it possesses a product map L ×L →L taking the
pair (X ,Y ) to the elements [X ,Y ] of L that satisfies the following proper-
ties.

(a) It is bilinear over R: That is, for anyα,β ∈R and Xi ,Yi ∈L for i = 1,2,
we have:

(1) [αX1 +βX2,Y ] =α[X1,Y ]+β[X2,Y ].

(2) [X ,αY1 +βY2] =α[X ,Y1]+β[X ,Y2].

(b) It is skew-commutative: That is for any X ,Y ∈L , we have:

[X ,Y ] =−[Y , X ].
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(c) It satisfies the Jacobi identity: That is, for any X ,Y , Z ∈L , we have:

[X , [Y , Z ]]+ [Y , [Z , X ]]+ [Z , [X ,Y ]] = 0.

(iii) Examples of Lie algebras.

(a) The vector space R3 with the usual vector cross product × is a Lie
algebra.

(b) The vector space Mn(R) with the product defined by [X ,Y ] = X Y −
Y X , for X ,Y ∈ Mn(R), is a Lie algebra.

(iv) Remark. Let M be a smooth manifold. In general, given X ,Y ∈X(M), the
product X Y , considered as an operator on M , does not determine a C∞

vector field.

(v) Lemma. Let M be a smooth manifold. Given X ,Y ∈X(M) , we have X Y −
Y X ∈X(M) according to the prescription

(X Y −Y X )p f = Xp (Y f )−Yp (X f ),

where f ∈ C ∞(p) and X f ,Y f ∈ C ∞(p) are defined by (X f )(q) := Xq ( f )
and (Y f )(q) := Yq ( f ), for every q in some neighborhood of U ∋ p.

(vi) Theorem For a smooth manifold M , the space X(M) with the product
(X ,Y ) 7→ [X ,Y ] is a Lie algebra.

(vii) Definition. Let M be a smooth manifold and let X ,Y ∈ X(M). Let θX :
W → M be the maximal flow generated by X . Then Lie derivative of Y
with respect to X , is the vector field LX Y ∈X(M) defined by:

(LX Y )p = lim
t→0

1

t

[
(θX

−t )∗(YθX (−t ,p))−Yp

]
= lim

t→0

1

t

[
Yp − (θX

t )∗(YθX (−t ,p))
]

,

at each p ∈ M .

(viii) Remark. Let M be a smooth manifold and let X ,Y ∈X(M).

(a) The tangent vector (LX Y )p measures the rate of change of Y in di-
rection of X along an integral curve of the vector field through p.

(b) If Zp (t ) = (θX
−t )∗(YθX (−t ,p)) ∈ Tp (M), viewed as a curve in Rn , then

L(X Y )p = Żp (0).
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(ix) Lemma. Let M be a smooth manifold and let X ∈X(M). Let θX : W → M
be the maximal flow generated by X . Given p ∈ M and f ∈C∞(U ), where
U ∋ p is an open set, we choose a δ > 0 and a neighborhood V ∋ p such
that θX ((−δ,δ)×V )) ⊂U . Then there exists a C∞ function g (t , q) defined
on (−δ,δ)×V such that for q ∈V and t ∈ (−δ,δ), we have:

f (θt (q)) = f (q)+ t g (t , q) and Xq ( f ) = g (0, q).

(x) Theorem. Let M be a smooth manifold and let X ,Y ∈ X(M). Then we
have:

LX Y = [X ,Y ].

(xi) Theorem. Let N , M be smooth be smooth manifolds, and let F : N → M
be a smooth mapping. For i = 1,2 let Xi ∈X(N ) and Yi ∈X(M) be vector
fields such that F∗(Xi ) = Yi . Then:

F∗[X1, X2] = [F∗(X1),F∗(X2)].

(xii) Corollary.

(a) The left-invariant vector fields on a Lie group G form a Lie algebra g
with product (X ,Y ) 7→ [X ,Y ] and dim(g) = dim(G).

(b) If F : G1 →G2 is a homomorphism of Lie groups, then F∗ : g1 → g2 is
a homomorphism of Lie algebras.

(xiii) Remark. Let G be e Lie group, H <G is a Lie subgroup, and i : H →G the
inclusion. Then i∗(h) is a subalgebra of g, which consists of the elements
of g tangent to H and to its cosets g H .

(xiv) Theorem. Let M be a smooth manifold and let X ,Y ∈X(M). Then [X ,Y ] =
0 if and only if for each p ∈ M , there exists δp > 0 such that

θX
s ◦θY

t (p) = θX
t ◦θY

s (p),

for all |t |, |s| < δp .
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2.8 Frobenius Theorem

(i) Definition. Let M be a smooth manifold and let dim(M) = n+k. For each
p ∈ M , we assign an n-dimensional subspace ∆p ⊂ Tp (M).

(a) Suppose in a neighnborhood of each p ∈ M , there exists n linearly
independent C∞ vector fields X1, . . . , Xn ∈ X(M), which forms basis
for all q ∈U . Then we say that ∆ is a C∞-plane distribution of dimen-
sion n on M and X1, . . . , Xn is a local basis of ∆.

(b) We say distribution∆ is involutive if there exists a local basis X1, . . . , Xn

in a neighborhood of each point such that:

[Xi , X j ] =
n∑

k=1
ck

i j Xk , for 1 ≤ i , j ≤ n,

where the ck
i j ∈C∞(M).

(ii) Definition. Let ∆ be a C∞ distribution on a smooth manifold M , and let
N be a connected smooth submanifold of M . If for each q ∈ N , we have
Tq (N ) ⊂∆q , then we say that N is an intergral manifold of ∆.

(iii) Example of a plane distributions.

(a) If M = Rn+k and ∆ = 〈Xi = ∂
∂xi

: 1 ≤ i ≤ n〉. Then the distribution is
the subspace of dimension n consisting of all vectors parallel to Rn

at each q ∈ M .

(b) Let G be e Lie group, H < G is a Lie subgroup, and i : H → G the
inclusion. Then the subalgebra i∗(h) of g defines a left-invariant dis-
tribution ∆ on G such that ∆h =∆h(H) for all h ∈ H .

(iv) Definition. Let ∆ be a C∞ distribution on a smooth manifold M and let
dim(M) = n +k. We say that ∆ is completely integrable if each p ∈ M has

a cubical neighborhood (U ,ϕ) such that Ei =ϕ−1∗
(
∂
∂xi

)
for 1 ≤ i ≤ n, are a

local basis on U for ∆.

(v) Remark. Let ∆ be a C∞ completely integrable distribution on a smooth
manifold M as in Definition 2.4 (iv). Then there exists an integral manifold
N through each q ∈U such that Tq (N ) = ∆q , that is, dim(N ) = n. In fact,
q = (a1, . . . , an), then an integral manifold through q is an n-slice given by

N =ϕ−1{x ∈ϕ(U ) : x j = a j , n +1 ≤ j ≤ m}.
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Furthermore, this distribution is involutive since:

[Ei ,E j ] =ϕ−1
∗

[
∂

∂xi
,
∂

∂x j

]
= 0, 1 ≤ i and j ≤ n.

A coordinate neighborhood (U ,ϕ) as above is called a flat with respect to
∆.

(vi) Theorem (Frobenius). A distribution ∆ on a smooth manifold M is com-
pletely integrable if and only if its involutive.

(vii) Corollary. Let (U ,ϕ) be a flat coordinate neighborhood relative to an invo-
lutive n-plane distribution ∆ on M . Then any connected integrable man-
ifold C ⊂U must lie on a single n-slice

Sa = {q ∈U : xi (q) = ai , n +1 ≤ i ≤ m}.

(viii) Theorem. Let M be smooth manifold of dimension n+k and let N ⊂ M be
an integral manifold of an involutive distribution∆with dim(N ) = dim(∆).
If F (A) ⊂ N is a C∞ mapping of a manifold A into M such that F (A) ⊂ N ,
then F is a C∞ mapping into N .

(ix) Definition. A maximal integral manifold N of an involutive distribution∆

on a smooth manifold M is a connected integral manifold which contains
every connected integral manifold that it intersects.

(x) Remark.

(a) If N is the maximal integral manifold of an involutive distribution ∆

on a smooth manifold M , then dim(N ) = dim(∆).

(b) At most one maximal integral manifold that can pass through a point
p ∈ M .

(xi) Theorem. Let G be a Lie group, g its Lie algebra, and let h be a subalgebra
of g. Then there exists a unique subgroup H <G whose Lie algebra is h.

2.9 Homogeneous spaces

(i) Definition. A smooth manifold M is said to be homogeneous space of the
Lie group G if there exists a C∞ action of G on M .
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(ii) Examples of homogeneous spaces.

(a) Since the Lie group O(n) has a transitive action on Sn−1, Sn−1 is a
homogeneous space of O(n).

(b) Since the Lie group GL(n,R) has a transitive action on Rn \{0}, Rn \{0}
is a homogeneous space of GL(n,R).

(iii) Theorem. Let G be a Lie group and H a closed Lie subgroup. Then there
exists a unique C∞ structure on G/H with the following properties.

(a) The canonical projection π : G →G/H is C∞.

(b) Each g ∈G is in the image of a C∞ section (V ,σ) on G/H .

(c) The natural actionλ : G×G/H →G/H is a C∞ action and dim(G/H) =
dim(G)−dim(H).

(iv) Lemma. If H is a connected Lie subgroup of a Lie group G , which is closed
as a subset of G . then:

(a) Each coset g H is closed.

(b) There is a cubical neighborhood (U ,ϕ) of any g ∈G such that for each
coset xH ∈G/H either xH ∩U =; or a xH ∩U is a single connected
slice.

(v) Theorem. Let G be a Lie group with a transitive action θ : G ×M → M on a
smooth manifold M .

(a) The mapping F̃ : G → M defined by F̃ (g ) = θ(g , a) is C∞ and rank
equal to dim(M) everywhere on G .

(b) For a ∈ M , the stabilizer subgroup H = Stabθ(a) = {g ∈G : θg (g ) = a}
is a closed subgroup of G . Hence, G/H is a C∞ manifold.

(c) The mapping F : G/H → M defined by F (g H) = F̃ (g ) is a diffeomor-
phism. Moreover, if λ : G ×G/H →G/H is the natural action of G on
G/H , then F ◦λg = θg ◦F , for all g ∈G .

(vi) Example of Lie groups realized as closed stablilizer subgroups.
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(a) We know that that Isom(Rn) ∼= O(n)×Rn . Consider the Lie subgroup
of G of GL(n +1,R) defined by

G =
{(

A V T

0. . .0 1

)
: A ∈ O(n) and V ∈Rn

}
and the set

X =
(

X T

1

)
: X ∈Rn}.

Then G acts transitively on X and Stabθ(0) = On . Hence, O(n) is a
closed subgroup of G .

(b) Consider the transitive action of the Lie group G = SL(n,R) on RP n

via the action (g , [x])
θ7−→ [g x]. Then:

Stabθ([(1,0, . . . ,0)]) = {A = (ai j ∈ SL(n,R) : a11 ̸= 0 and ai 1 = 0, for i > 1}.

(c) Consider the transitive action θ : G × M → M of the Lie group G =
GL(n,R) on the Grassmanian M =G(k,n), the set of k-frames through
the origin. For a k-plane P ∈ M , let H = Stabθ(P ). Then G/H ∼=
G(k,n) and hence G(k,n) is a manifold.

(vii) Remark. If a Lie group acts transitively on set X in such a way that the
stabilizer subgroup of a point a ∈ X is a closed Lie subgroup, then there
exists a unique C∞ structure on X such that the action is C∞.
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