MTH 508/608: Introduction to Differentiable Manifolds and Lie Groups Semester 1, 2024-25

October 28, 2024

This Lesson Plan is based on the topics covered in [1, 2].

Contents

1	Diff	erentiable manifolds	3
	1.1	Review of multivariable differential calculus	3
		1.1.1 Real-valued differentiable functions	3
		1.1.2 Differentiable functions $\mathbb{R}^n \to \mathbb{R}^m$	4
	1.2	Smooth manifolds	7
		1.2.1 Topological manifolds	7
		1.2.2 Smooth manifolds	8
		1.2.3 Differentiable functions on smooth manifolds	10
		1.2.4 Submanifolds	13
	1.3	Lie groups and their actions on manifolds	15
		1.3.1 Lie groups	15
		1.3.2 Lie group actions	16
		1.3.3 Discrete groups and properly discontinuous actions	18
2	Vec	tor fields on manifolds	20
	2.1	Tangent space at a point on a manifold	20
	2.2	Vector fields	24
	2.3	Flows on manifolds	26
	2.4	Existence of integral curves	28
	2.5	One-parameter subgroups	32

2.6	One-parameter subgroups of Lie groups	33
2.7	Lie algebra of vector fields	35
2.8	Frobenius Theorem	38
2.9	Homogeneous spaces	39

1 Differentiable manifolds

1.1 Review of multivariable differential calculus

1.1.1 Real-valued differentiable functions

(i) **Definition.** Let $f : U \subset \mathbb{R}^n \to \mathbb{R}$, where *U* is an open set. Then for $1 \le k \le n$, the k^{th} partial derivative $\frac{\partial f}{\partial x_k}$ at $a = (a_1, \dots, a_n) \in U$ is defined by:

$$\left(\frac{\partial f}{\partial x_k}\right)_a = \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.$$

- (ii) **Definition.** A function $f : U(\subset \mathbb{R}^n) \to \mathbb{R}$ is said to be *continuously differentiable* on *U* (in symbols $f \in C^1(U)$) if for $1 \le k \le n$, $\left(\frac{\partial f}{\partial x_k}\right)$ is well-defined and continuous on *U*.
- (iii) A function $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$ is said to be *differentiable* at $a \in U$ if there exists constants b_1, \ldots, b_n and a function r(x, a) defined on a neighborhood $V \ni a$ in U satisfying the following conditions.

(a)
$$f(x) = f(a) + \sum_{i=1}^{n} b_i (x_i - a_i) + ||x - a|| r(x, a).$$

(b) $\lim_{x \to a} r(x, a) = 0$

(b)
$$\lim_{x \to a} r(x, a) = 0$$

- (iv) **Theorem.** Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$, where *U* is an open set. If *f* is differentiable at $a \in U$, then *f* is continuous at *a*, and $\left(\frac{\partial f}{\partial x_k}\right)_a$ exists for $1 \le k \le n$ and $b_k = \left(\frac{\partial f}{\partial x_k}\right)_a$. Conversely, if $\left(\frac{\partial f}{\partial x_k}\right)$ for $1 \le k \le n$ exist for each *y* in some neighborhood $V \ni a$ and are continuous on *V*, then *f* is differentiable at *a*.
- (v) **Definition.** Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$, where *U* is an open set. Then:
 - (a) f is said to be *r*-fold continuously differentiable (in symbols $f \in C^{r}(U)$) if all of its r^{th} order partial derivtaives exists at each $a \in U$ and are continuous on U.
 - (b) *f* is said to be *smooth* (in symbols) $f \in C^{\infty}(U)$) if $f \in C^{r}(U)$ for each $r \ge 1$.

- (vi) **Definition.** A differentiable C^r curve in \mathbb{R}^n is a continuous map $f : (a, b) \to \mathbb{R}^n$ such that each component function $f_i : (a, b) \to \mathbb{R}$ for $1 \le i \le n$ satisfies $f_i \in C^r(a, b)$.
- (vii) **Proposition (Chain rule).** Let $f : (a, b) \to U (\subset \mathbb{R}^n)$ be a differentiable curve, and let $g : U \to \mathbb{R}$ be differentiable at $f(t_0)$ for some $to \in (a, b)$. Then $g \circ f$ is differentiable at t_0 and we have:

$$\frac{d}{dt}(g\circ f)_{t_0}=\sum_{i=1}^n\left(\frac{\partial g}{\partial x_i}\right)_{f(x_0)}\left(\frac{dx_i}{dt}\right)_{t_0}.$$

- (viii) **Definition.** We say a domain $U \in \mathbb{R}^n$ is *star-shaped with respect to* $a \in U$, if for each $x \in U$, the line segment $\overline{ax} \subset U$.
- (ix) **Theorem (Mean Value Theorem).** Let $f : U (\subset \mathbb{R}^n) \to \mathbb{R}$ be differentiable and let *U* be star-shaped with respect to $a \in U$. Then given $x \in U$, there exists $\theta \in (0, 1)$ such that:

$$f(x) - f(a) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)_{a+\theta(x-1)} (x_i - a_i).$$

(x) **Corollary.** Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$ be differentiable and let *U* be star-shaped with respect to $a \in U$. If for $1 \le k \le n$, $\left|\frac{\partial f}{\partial x_i}\right| < k$ on *U*, then for any $x \in U$, we have:

$$|f(x) - f(a)| < k\sqrt{n}|x - a|$$

(xi) **Corollary.** If $f \in C^r(U)$, then at each $a \in U$, the value of any k^{th} order mixed partial derivative is independent of the order of differentiation.

1.1.2 Differentiable functions $\mathbb{R}^n \to \mathbb{R}^m$

- (i) **Definition.** Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, where *U* is open. Then:
 - (a) *f* is said to be *differentiable of class r* (in symbols $f \in C^{r}(U)$), if $f_i \in C^{r}(U)$, for $1 \le i \le m$.
 - (b) f is said to be *smooth* (in symbols $f \in C^{\infty}(U)$) is $f_i \in C^{\infty}(U)$, for $1 \le i \le m$.

(ii) If $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$ is differentiable on *U*, then its *Jacobian matrix* defined by

$$Df := \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

exists at each $a \in A$.

(iii) **Proposition.** A mapping $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$ is differentiable at $a \in U$ (resp. on *U*) if and only if there exists an $m \times n$ matrix *A* of constants (resp. functions on *U*) and an *m*-tuple $R(x, a) = (r_1(x, a), \dots, r_n(x, a))$ of functions on *U* (resp. $U \times U$) such that $||R(x, a)|| \to 0$ as $x \to a$ and for each $a \in U$, we have:

$$F(x) = F(a) + A(x - a) + |x - a|R(x, a).$$

If such R(x, a) and A exists, then A is unique and A = Df.

(iv) **Theorem.** Let $f : U(\subset \mathbb{R}^n) \to \mathbb{R}^m$, where *U* is open, and let *U* be star-like with respect to $a \in U$. If *f* is differentiable on *U* with $\left|\frac{\partial f_i}{\partial x_j}\right| \le k$ for $1 \le i \le m$ and $1 \le j \le n$, for every $a \in U$. Then:

$$|F(x) - F(a)| \le \sqrt{nmk}|x - a|.$$

(v) **Theorem(Chain Rule).** Let $f: U(\subset \mathbb{R}^n) \to V(\subset \mathbb{R}^m)$ and let $g: V \to \mathbb{R}^p$. If f is differentiable at $a \in U$ and g is differentiable at b = f(a), then $h = g \circ f$ is differentiable at x = a and

$$Dh(a) = Dg(F(a))Df(a).$$

- (vi) **Corollary.** Let $f: U(\subset \mathbb{R}^n) \to V(\subset \mathbb{R}^m)$ and let $g: V \to \mathbb{R}^p$. If $f \in C^r(U)$ and $g \in C^r(V)$, then $g \circ f \in C^r(U)$.
- (vii) Let $\mathscr{C} = \{x : (-\epsilon, \epsilon) \to \mathbb{R}^n : x \in C^1(-\epsilon, \epsilon), x(0) = a, \text{ and } \epsilon \in (0, \infty)\}$. Define an equivalence relation ~ on \mathscr{C} by $x(t) \sim y(t)$ is x'(0) = y'(0), for $1 \le i \le n$. Then there exists a well-defined correspondence

$$\mathscr{C}/ \sim \leftrightarrow V^n : [x(t)] \leftrightarrow (x'_1(0), \dots, x'_n(0)), \tag{*}$$

where V^n is vector space of dimension n over \mathbb{R} .

- (viii) **Definition.** The correspondence in (*) above induces a vector space structure on \mathscr{C}/\sim called the *tangent space of* \mathbb{R}^n at *a* denoted by $T_a(\mathbb{R}^n)$.
- (ix) **Definition.** A map $f : U (\subset \mathbb{R}^n) \to V (\subset \mathbb{R}^m)$ is called a C^r -diffeomorphism if:
 - (a) f is a homeomorphism and
 - (b) both f and f^{-1} are of class C^r .
- (x) Let $U, V, W \subset \mathbb{R}^n$ be open. Let $f : U \to V$ and $g : V \to W$ be onto mappings, and let $h = g \circ f$. If any two of these are diffeomorphisms, then so is the third.
- (xi) **Theorem (Inverse Function Theorem).** Let $f : W (\subset \mathbb{R}^n) \to \mathbb{R}^n$ be a C^r mapping for some $r \ge 1$. If for $a \in W$, Df(a) is non-singular, then there exists a neighborhood $U \ni a$ in W such that V = f(U) is open and $f : U \to V$ is a C^r -diffeomorphism. In particular, if y = f(x), then

$$Df^{-1}(y) = (Df(x))^{-1}.$$

- (xii) **Corollary.** Let $f: W(\subset \mathbb{R}^n) \to \mathbb{R}^n$, where *W* is open. If Df(a) is non-singular at each $a \in W$, then *f* is an open map.
- (xiii) **Corollary.** A C^{∞} map $f : W (\subset \mathbb{R}^n) \to \mathbb{R}^n$ is a diffeomorphism $W \to f(W)$ if and only if Df is non-singular at each $a \in W$.
- (xiv) Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$. Then the rank of Df(x) is defined to be *rank of f at x*.
- (xv) **Theorem (Rank Theorem).** Let $f: U_0(\subset \mathbb{R}^n) \to V_0(\subset \mathbb{R}^m)$ be a C^r -mapping and let rank of f be k at each $x \in U_0$. If $a \in U_0$ and b = f(a), then there exists open sets $U \subset U_0$ and $V \subset V_0$ with $a \in U$ and $b \in V$, and there exists C^r -diffeomorphisms $g: U \to U'(\subset \mathbb{R}^m)$, $h: V \to V'(\subset \mathbb{R}^m)$ such that $h \circ f \circ$ $g^{-1}(U') \subset V'$ and

$$h \circ f \circ g^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0).$$

1.2 Smooth manifolds

1.2.1 Topological manifolds

- (i) **Definition.** A topological space *M* is said to be *locally Euclidean of dimension n* if for each $p \in M$, there exists a neighborhood $U_p \ni p$ and a homeomorphism φ_p from *U* to an open set in \mathbb{R}^n , for some fixed *n*. Each pair (U_p, φ_p) is called a *coordinate neighborhood (or chart* of *M*.
- (ii) Definition. An *topological n-manifold* (or a *topological manifold of dimension n*) is a topological space *M* with the following properties.
 - (a) *M* is Hausdorff.
 - (b) *M* is locally Euclidean of dimension *n*.
 - (c) *M* is second countable.
- (iii) Examples of topological *n*-manifolds.
 - (a) An open subset of \mathbb{R}^n is an *n*-manifold.
 - (b) The unit sphere S^2 is a 2-manifold.
 - (c) The torus $T^2 \approx S^1 \times S^1$ is a 2-manifold.
 - (d) The *real projective* n-space $\mathbb{R}P^n = \mathbb{R}^{n+1} \{0\}/\sim$, where $x \sim y$, of y = tx, or equivalently, the space of all lines through the origin in \mathbb{R}^{n+1} is an n-manifold.
 - (e) If *M* is a smoothly embedded 2-manifold in \mathbb{R}^3 , then the *tangent bundle of M* defined by $T(M) := \bigcup_{p \in M} T_p(M)$ is a 4-manifold.
- (iv) **Theorem.** A topological *n*-manifold *M* has the following properties.
 - (a) M is locally connected.
 - (b) *M* is locally compact.
 - (c) *M* is a countable union of compact sets (i.e. σ -compact).
 - (d) *M* is normal and metrizable.
- (v) **Definition.** A *topological n-manifold with boundary* is a Hausdorff, secondcountable space, where each $p \in M$ has a neighborhood $U \ni p$ such that U is homeomorphic via (a homeomorphism) φ to either:

- (a) an open set of $\mathbb{H}^n \partial \mathbb{H}^n$, where $\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \ge 0\}$, or
- (b) an open set in \mathbb{H}^n with $\varphi(p) \in \partial \mathbb{H}^n$.
- (vi) Examples of manifolds with boundary.
 - (a) The annulus $S^1 \times I$ is a 2-manifold with two boundary components.
 - (b) The torus minus a disk is a 2-manifold with one boundary components.
 - (c) The sphere minus 3 (mutually disjoint) open disks (also known as a *pair of pants*) is a 2-manifold with three boundary components.

(vii) Theorem (Classification of 2-manifolds or surfaces).

- (a) Every compact, connected, closed (without boundary), and orientable (resp. non-orientable) 2-manifold is homeomorphic to a sphere with $g \ge 0$ handles (resp. $g \ge 1$ crosscaps) attached.
- (b) Every compact and connected 2-manifold with boundary is homeomorphic to a compact, connected, and closed 2-manifold with $b \ge 1$ mutually disjoint imbedded open disks removed.

1.2.2 Smooth manifolds

- (i) Definition. Two coordinate neighborhoods (U_p, φ_p) and (U_q, φ_q) of a topological *n*-manifold *M* are said to be C[∞]-compatible (or smoothly compatible) if U_p ∩ U_q ≠ Ø implies that both φ_p ∘ φ_q⁻¹ and φ_q ∘ φ_p⁻¹ are diffeomorphisms.
- (ii) **Definition.** A *differentible* (or C^{∞} or *smooth*) structure on a topological manifold *M* is a family $\mathscr{U} = (U_{\alpha}, \varphi_{\alpha})$ of coordinate neighborhoods of *M* that satisfies the following conditions.
 - (a) The U_{α} cover M.
 - (b) For any α , β , the coordinate neighborhoods $(U_{\alpha}, \varphi_{\alpha})$ and $(U_{\beta}, \varphi_{\beta})$ are smoothly compatible.
 - (c) If (V, ψ) is a coordinate neighborhood that is smoothly compatible with every coordinate neighborhood in \mathcal{U} , then $(V, \psi) \in \mathcal{U}$.

If $\mathcal{U} = (U_{\alpha}, \varphi_{\alpha})$ satisfies just (a) & (b), it is called an *atlas for M*, and if an atlas for *M* also satisfies (c) it is called a *maximal atlas for M*. Thus, a smooth structure on *M* is also known as a maximal atlas for *M*.

- (iii) **Definition.** A *differentible* (or C^{∞} or *smooth*) *n-manifold* is a topological *n*-manifold *M* together with a smooth structure on *M*.
- (iv) **Theorem.** Let *M* be a Hausdorff and second-countable space. Let $\{U_{\alpha}, \varphi_{\alpha}\}$ be a covering of *M* by smoothly compatible coordinate neighborhoods. Then there exists a unique smooth structure on *M* containing these neighborhoods (called the *smooth structure determined by the* $\{U_{\alpha}, \varphi_{\alpha}\}$).
- (v) Examples of differentiable manifolds.
 - (a) \mathbb{R}^n with the standard topology is a differentiable manifold with a single coordinate neighborhood (\mathbb{R}^n , *id*) determining a structure by Theorem 1.2.2 (iv).
 - (b) An *n*-dimensional vector space over \mathbb{R} is a differentiable *n*-manifold. Consequently, the vector space $M_n(\mathbb{R})$ of $n \times n$ matrices over the reals is a differentiable n^2 -manifold.
 - (c) An open subset of a differentiable *n*-manifold is also differentiable *n*-manifold.
 - (d) The general linear group $GL(n, \mathbb{R})$ is a differentiable n^2 -manifold since $GL(n, \mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ under the determinant map $\det : M_n(\mathbb{R}) \to \mathbb{R}$.
 - (e) The unit sphere $S^2 \subset \mathbb{R}^3$ is a differentiable 2-manifold with the differentiable structure determined by $\{(U_i^{\pm}, \varphi_i^{\pm}) : 1 \le i \le 3\}$, where

$$U_i^{\pm} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \pm x_i > 0\} \text{ and } \varphi_i^{\pm}(x_1, x_2, x_3) = \pi_i(x_1, x_2, x_3),\$$

where π_i denotes the projection onto the coordinate plane with the unit vector e_i as the unit normal.

(f) The real projective *n*-space $\mathbb{R}P^n$ is a differentiable *n*-manifold with the structure determined by the coordinate neighborhoods { (U_i, φ_i) : $1 \le i \le n + 1$ }, where

$$U_i = \{q(\bar{U}_i) : \bar{U}_i = \{x \in \mathbb{R}^{n+1} : x_i \neq 0\}\} \text{ and } q : \mathbb{R}^{n+1} \to \mathbb{R}P^n \text{ is the quotient map}\}$$

and $\varphi_i : U_i \to \mathbb{R}^n$ is defined by

$$\varphi_i(x_1,\ldots,x_{n+1}) = \left(\frac{x_1}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_{n+1}}{x_i}\right).$$

(g) The *Grassman manifold* G(k, n) is defined to be the set of *k*-planes through the origin in \mathbb{R}^n . Let F(k, n) denotes the set of *k*-frames (i.e. linearly independent sets of *k* elements) in \mathbb{R}^n . Define an equivalence relation ~ on F(k, n) by:

$$X \sim Y \iff \exists A \in GL(n, \mathbb{R})$$
 such that $Y = AX$.

Then $G(k, n) \approx F(k, n) / \sim$. Hence, G(k, n) is Hausdorff and the quotient map $\pi : F(k, n) \to G(k, n)$ is open. Given an ordered subset $J = (j_1, ..., j_k)$ of (1, 2, ..., n) and an $A \in M_{kn}(\mathbb{R})$, let $A_J = (a_{ij_\ell})_{1 \le i, \ell \le k}$ be a $k \times k$ submatrix of A and A'_J be the complementary $k \times (n - k)$ matrix obtained by striking out the columns $j_1, ..., j_k$ of A. Let $U_{\overline{J}}$ be the open set of F(k, n) consisting of matrices for which A_J is nonsingular and let $U_J = \pi(U_{\overline{J}})$. Then G(k, n) is a differentiable manifold with a differentiable structure determined by the coordinate neighborhoods $\{(U_J, \varphi_J)\}$, where $\varphi_J : U_J \to M_{k(n-k)} (\approx \mathbb{R}^{k(n-k)})$ defined by $\varphi(B) = B'_I$.

(vi) **Theorem.** If *M* is a differentiable *m*-manifold and *N* is a differentiable *n*-manifold, the $M \times N$ is a differentiable (m + n)-manifold.

1.2.3 Differentiable functions on smooth manifolds

- (i) **Definition.** Let *M* be a smooth manifold. A map $f: W(\subset M) \to \mathbb{R}$, where *W* is open, is said to be C^{∞} (or *smooth*) if each $p \in W$ lies in a coordinate neighborhood (U, φ) such that $f \circ \varphi^{-1}$ is C^{∞} on $\varphi(W \cap V)$.
- (ii) **Remark.** A C^{∞} map as in the Definition above is continuous.
- (iii) Examples of C^{∞} maps.
 - (a) The coordinate projections of a coordinate neighborhood (U, φ) defined by $x_i(q) = \pi_i(\varphi(q))$, for each $q \in U$ are C^{∞} .
 - (b) If $F \in C^{\infty}(W)$ and $V \subset W$ is open, then $F|_W \in C^{\infty}(W)$.
 - (c) If $W = \bigcup_{\alpha} V_{\alpha}$, where V_{α} is open and $F \in C^{\infty}(V_{\alpha})$ for each α , then $f \in C^{\infty}(W)$.
 - (d) If $f \in C^{\infty}(W)$ and (V, ψ) is a coordinate neighborhood such that $V \cap W \neq \emptyset$, then $f \circ \psi^{-1} \in C^{\infty}(\psi(V \cap W))$.

- (iv) **Definition.** Let *M* and *N* be smooth manifold, and let $F : W (\subset M) \to N$, where *W* is open. Then *f* is said to be a C^{∞} (or *smooth*) *mapping* if for each $p \in W$, there exists coordinate neighborhoods (U, φ) of *p* and (V, ψ) of f(p) with $f(U) \subset V$ such that $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \varphi(V)$ is C^{∞} .
- (v) **Remark.** C^{∞} mappings satisfy the following properties.
 - (a) They are continuous.
 - (b) The constructions in Examples (b)-(d) also hold true in the setting of C^{∞} mappings.
- (vi) **Definition.** Let *M* and *N* be smooth manifolds. A C^{∞} mapping $f: M \to N$ is said to be a *diffeomorphism* if *f* is a homeomorphism and f^{-1} is C^{∞} .
- (vii) Remark.
 - (a) The relation of diffeomorphism between smooth manifolds is an equivalence relation.
 - (b) Smooth manifolds with the same underlying topological manifolds but incompatible C^{∞} structures can be diffeomorphic. For example, consider the smooth structure (\mathbb{R}, f) on \mathbb{R} , where $f(t) = t^3$. Note that $f \in C^{\infty}(\mathbb{R})$ and is a homeomorphism, but not a diffeomorphism since $f^{-1}(t) = \sqrt[3]{t} \notin C^1(\mathbb{R})$. Furthermore, the smooth structures (\mathbb{R}, id) and (\mathbb{R}, f) on \mathbb{R} are not C^{∞} compatible. However, \mathbb{R} with these two structures are diffeomorphic.
 - (c) It is a non-trivial fact that a topological manifold M can have nondiffeomorphic C^{∞} structures. Milnor gave examples of non-diffeomorphic C^{∞} structures on S^7 .
- (viii) **Definition.** Let $F: N \to M$ be a differentiable mapping of smooth manifolds and let $p \in N$. Let (U, φ) and (V, ψ) be coordinate neighborhoods of p and f(p) such that $f(U) \subset V$. Then the *rank of f at p* is defined as the rank of $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$.
- (ix) **Remark.** The rank of *f* at *p* is the rank of the Jacobian matrix of $\psi \circ f \circ \varphi^{-1}$ at $\varphi(p)$.
- (x) **Theorem (Rank Theorem).** Let $F : N \to M$ be a differentiable mapping of smooth manifolds and let $p \in N$. Let dim(M) = m, dim(N) = n, and

 $\operatorname{rank}(f) = k$ at each point of *N*. Then there exists coordinate neighborhoods (U, φ) and (V, ψ) of *p* and f(p) with $f(U) \subset V$ such that:

- (a) $\varphi(p) = 0 \in \mathbb{R}^n$, $\varphi(U) = C_{\epsilon}^n(0)$,
- (b) $\psi(f(p)) = 0 \in \mathbb{R}^m$, $\varphi(V) = C_{\epsilon}^m(0)$, and
- (c) $(\psi \circ f \circ \varphi^{-1})(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0).$
- (xi) **Corollary.** If $f : N \to M$ is a diffeomorphism, then $\dim(M) = \dim(N) = \operatorname{rank}(f)$.
- (xii) **Definition.** A C^{∞} mapping $f : N \to M$ between smooth manifolds is said to be an *immersion* (resp. *submersion*) if rank $(f) = \dim(N)$ (resp. rank $(f) = \dim(M)$).
- (xiii) Remark.
 - (a) Since $\operatorname{rank}(f) \le \max(\dim(M), \dim(N))$ at every point, it follows that if f is an immersion (resp. submersion), then $\dim(M) \le \dim(N)$ (resp. $\dim(M) \ge \dim(N)$).
 - (b) If f : N → M is an injective immersion, then using the correspondence N ↔ f(N), f(N) can be endowed with a topology and a C[∞] structure from N under which f : N → f(N) is a diffeomorphism.
- (xiv) **Definition.** Let $f : N \to M$ is an injective immersion. Then f(N) is called an *immersed submanifold* of *M*.
- (xv) Remark.
 - (a) Immersions need not be injective.
 - (b) Even when injective, an immersion need not define a homeomorphism onto its image.
- (xvi) **Definition.** An injective immersion $f : N \to M$ that defines a homeomorphism $\tilde{f} : N \to f(N)$ onto its image is called an *imbedding*.
- (xvii) Example of immersions.
 - (a) The map $f : \mathbb{R} \to \mathbb{R}^3$ be defined by $f(t) = (\cos(2\pi t), \sin(2\pi t), t)$ is an imbedding whose image is an infinite helix on the unit infinite cylinder with the *z*-axis as axis.

- (b) The map $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$ a (noninjective) immersion whose image is the unit circle centered at the origin.
- (c) The map $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (2\cos(t \pi/2), \sin(2t \pi))$ a (non-injective) immersion whose image is a figure-eight curve (also known as a *lemniscate*).
- (d) The map $f \circ g$, where $g(t) = \pi + 2\tan^{-1}(t)$ and f as in example (c) above, is an injective immersion that is not an imbedding.
- (xviii) **Theorem.** Let $f : N \to M$ be an immersion. Then at each $p \in N$ there exists a neighborhhod $U \ni p$ such that $f|_U$ is an imbedding of U in M.

1.2.4 Submanifolds

- (i) **Definition.** A subset *N* of a smooth *m*-manifold *M* is said to have the *n*-submanifold property if each $p \in N$ has a coordinate neighborhood (U, φ) on *M* such that: .
 - (a) $\varphi(p) = 0 \in \mathbb{R}^n$,
 - (b) $\varphi(U) = C_{\epsilon}^{m}(0)$, and
 - (c) $\varphi(U \cap N) = \{x \in C_{\epsilon}^{m}(0) : x_{n+1} = \dots = x_{m} = 0\}.$

If an $N \subset M$ satisfies this property, then any coordinate neighborhood satisfying (a) - (c) above is called a *preferred coordinate neighborhood*.

- (ii) **Lemma.** Let *M* be a smooth *m*-manifold, and let $N \subset M$ have the smooth *n*-submanifold property. Then:
 - (a) *N* with the subspace topology is a topological *n*-manifold.
 - (b) Each coordinate neighborhood (*U*, φ) on *M* defines a coordinate neighborhood (*U* ∩ *N*, π ∘ φ|_V) on *M* and these coordinate neighborhoods define an induced C[∞] structure on *N*.
 - (c) Relative to the induced structure above, the inclusion $N \hookrightarrow M$ is an imbedding.
- (iii) **Definition.** A *regular submanifold* N of a smooth m-manifold M is a subspace of M with the n-submanifold property and with C^{∞} structure that the corresponding preferred coordinate neighborhoods determine on it.

- (iv) **Theorem.** Let N' and M be smooth smooth manifolds of dimensions n and n respectively, and let $f : N' \to M$ be an imbedding. Then:
 - (a) N = f(N') has the *n*-submanifold property and is hence a regular submanifold of *M*, and
 - (b) f defines a diffeomorphism $\tilde{f}: N' \to N$ onto its image.
- (v) **Theorem.** Let N' and M be smooth manifolds of dimensions n and m respectively, and $f: N' \to M$ is an injective immersion. If N is compact, then N = f(N') is a regular n-submanifold. Consequently, a compact submanifold of M is regular.
- (vi) **Theorem (Regular Value Theorem).** Let *N* and *M* be smooth manifolds of dimensions *n* and *m* respectively, and $f: N \to M$ be a C^{∞} mapping. If *f* has constant rank *k* on *N*, then for any $q \in f(N)$, $f^{-1}(q)$ is a closed regular submanifold of *N* of dimension n k.
- (vii) **Corollary.** Let *N* and *M* be smooth manifolds of dimensions *n* and *m* respectively, and $f : N \to M$ be a C^{∞} mapping. If $m \le n$ and $\operatorname{rank}(f) = m$ at each point of $A = f^{-1}(a)$, then *A* is a closed regular submanifold of *M* of dimension n m.
- (viii) Example of regular submanifolds.
 - (a) The smooth map $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x_1, ..., x_n) = \sum_{i=1}^n x_i^2$. has constant rank 1 on $\mathbb{R}^n \setminus \{0\}$. Thus, by the Regular Value Theorem, the unit sphere $S^{n-1} = f^{-1}(0)$ is a submanifold of $\mathbb{R}^n \setminus \{0\}$, and hence \mathbb{R}^n of dimension n-1.
 - (b) The smooth map $f : \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f(x_1, x_2, x_3) = \left(a - \sqrt{x_1^2 + x_2^2}\right)^2 + x_3^2,$$

where a > b > 0, has constant rank 1 at each point of the torus $f^{-1}(b^2)$. Thus, by the Corollary to the Regular Value Theorem, it follows that the torus is a submanifold of \mathbb{R}^3 of dimension 2.

1.3 Lie groups and their actions on manifolds

1.3.1 Lie groups

- (i) **Definition.** Let *G* be a group and a smooth manifold. Then *G* is *Lie group* if the group operation *G* × *G* → *G* : (*g*, *h*) → *gh* and the inverse mapping *G* → *G* : *g* → *g*⁻¹ are *C*[∞] mappings.
- (ii) Examples of Lie groups.
 - (a) The general linear group $GL(n, \mathbb{R})$ is a Lie groups with respect to matrix multiplication.
 - (b) $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is a Lie group with respect to complex multiplication. Note that C^* is a smooth manifold with a differentiable structure comprising single coordinate neighborhood (U, φ) , where $U = C^*$ and $\varphi : C^* \to \mathbb{R}^2$ defined by $\varphi(x + iy) = (x, y)$.
- (iii) **Lemma.** Let $f : A \to M$ be a C^{∞} mapping of C^{∞} manifolds. If $f(A) \subset N$, where *N* is a regular submanifold, then *f* is a C^{∞} mapping onto *N*.
- (iv) **Theorem.** Let *G* be a Lie group and *H* < *G* be a regular submanifold. Then with its differentiable structure as a submanifold, *H* is a Lie group.
- (v) **Theorem.** If G_1 and G_2 are Lie groups, then $G_1 \times G_2$ is a Lie group with the C^{∞} structure coming from the Cartesian product of the manifolds.
- (vi) More examples of Lie groups
 - (a) By Theorem 2.1(iv) above, $S^1 \subset C^*$ is a Lie group. Consequently, by Theorem 2.1 (v), the *n* torus $T^n = \prod_{i=1}^n S^1$ is a Lie group.
 - (b) The *special linear group* $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : det(A) = 1\}$ is a Lie group of dimension $n^2 1$. This follows from the Regular Value Theorem and Theorem 2.1(iv) since the C^{∞} mapping det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$ has constant rank 1 and $SL(n, \mathbb{R}) = det^{-1}(1)$.
 - (c) The *orthogonal group* $O(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : AA^T = I_n\}$ is a Lie group of dimension n(n-1)/2. This follows from the Regular Value Theorem and Theorem 2.1(iv) since the C^{∞} mapping $f : GL(n, \mathbb{R}) \rightarrow GL(n, \mathbb{R})$ defined by $f(A) = AA^T$ has constant rank n(n+1)/2 and $O(n, \mathbb{R}) = f^{-1}(I_n)$.

- (vii) **Definition.** Let G_1 and G_2 be Lie groups. We call an $f : G_1 \rightarrow G_2$ a *Lie group homomorphism* if:
 - (a) f is a homomorphism and
 - (b) f is a C^{∞} mapping.
- (viii) Example of Lie group homomorphisms.
 - (a) The map det: $GL(n, \mathbb{R}) \to \mathbb{R}^*$ is a Lie group homomorphism.
 - (b) The (covering) map p: ℝ → S¹ defined by p(x) = e^{2πix} is a Lie group homomorphism. By extension, pⁿ : ℝⁿ → Tⁿ is a Lie group homomorphism.
 - (c) Consider the covering map $p^2 : \mathbb{R}^2 \to T^2$ from the preceding example and a line $L_{\alpha} \subset \mathbb{R}^2$ through the origin of irrational slope α given by $L_{\alpha} = \{(x, \alpha x) : x \in \mathbb{R}\}$. Then $p^2(L_{\alpha})$ is a dense subset of T^2 . Moreover, $p^2|_{L_{\alpha}} : L_{\alpha} \to T^2$ is an injective immersion. Thus, $f(L_{\alpha})$ is an immersed submanifold of T^2 .

Moreover, if $g : \mathbb{R} \to \mathbb{R}^2$ is defined by $g(t) = (t, \alpha t)$, then $p^2 \circ g : \mathbb{R} \to T^2$ is a Lie group homomorphism and $(p^2 \circ g)(\mathbb{R}) = p^2(L_\alpha)$ is Lie group. However, $p^2(L_\alpha)$ is neither closed or a regular submanifold of T^2 .

- (ix) **Theorem.** If $f: G_1 \rightarrow G_2$ is a Lie group homomorphism, then:
 - (a) rank(f) is constant and
 - (b) ker f is a closed regular submanifold of G_1 .
- (x) **Theorem.** If *H* is a regular submanifold and a subgroup of a Lie group *G*, then *H* is a closed subset of *G*.

1.3.2 Lie group actions

- (i) **Definition.** Let *G* be a Lie group, and *X* be a smooth manifold. Then *G* acts smoothly on *X* (in symbols *G* ∩ *X*) is there exists a C[∞] mapping θ : G × X → X satisfying the following conditions.
 - (a) If $e \in G$ is the identity, then $\theta(e, g) = g$, for all $g \in G$.
 - (b) If $g_1, g_2 \in G$, then $\theta(g_1, \theta(g_2, x)) = \theta(g_1g_2, x)$, for all $x \in X$.
- (ii) Notation

- (a) We often write $\theta(g, x)$ in the definition above simply as $g \cdot x$ or gx.
- (b) For a fixed $g \in G$, we denote by θ_g , the mapping $x \mapsto gx$, for all $x \in G$.
- (iii) **Remark.** $G \cap X$ if and only if the map $G \to \text{Diffeo}(X)$ defined by $g \mapsto \theta_g$ is a homomorphism.
- (iv) **Definition.** Let *G* be a Lie group, and *X* be a smooth manifold. Then a smooth action of *G* on *X* is *effective (or faithful)* if the homomorphism $g \rightarrow \theta_g$ is injective.
- (v) Example of Lie group actions.
 - (a) Let *H* and *G* be Lie groups, and $\psi : H \to G$ a Lie group homomorphism. Then $\theta : H \times G \to G$ defined by $\theta(h, x) = \psi(h)(x)$ is a smooth action.
 - (b) The natural action of GL(n, ℝ) on ℝⁿ is a smooth action which has a unique fixed point {0}. Note that this is a transitive action on ℝⁿ \ {0}.
 - (c) If $H < GL(n, \mathbb{R})$ and the inclusion $H \hookrightarrow GL(n, \mathbb{R})$ is an immersion or an imbedding, then restricted action of H on \mathbb{R}^n is smooth. For example, the restricted action of the subgroup

$$H = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \in \operatorname{GL}(2, \mathbb{R}) : a > 0 \right\},\$$

which is a two-dimensional regular submanifold of $GL(2, \mathbb{R})$, on \mathbb{R}^2 , is smooth.

- (d) The Lie group $G = \text{Isom}(\mathbb{R}^n) \cong O(n, \mathbb{R}) \times \mathbb{R}^n$ of rigid motions in \mathbb{R}^n acts smoothly on \mathbb{R}^n and this action is given by $\theta : G \times \mathbb{R}^n \to \mathbb{R}^n$, where $\theta((A, b), x) = Ax + b$.
- (e) The group $GL(n, \mathbb{R})$ acts transitively on the set \mathscr{B} of bases of \mathbb{R}^n (also known as the space of *n*-frames of \mathbb{R}^n). Given a basis $f = \{f_1, \ldots, f_n\}$ of \mathbb{R}^n , there exists a unique matrix in $GL(n, \mathbb{R})$ that maps the standard basis $e = \{e_1, \ldots, e_n\}$ to f. Thus, there is a correspondence $\mathscr{B} \leftrightarrow GL(n, \mathbb{R})$, which is a diffeomorphism. Hence, \mathscr{B} is a smooth manifold and the action of $GL(n, \mathbb{R})$ on \mathscr{B} is smooth.
- (f) The Lie group $O(n, \mathbb{R})$ acts on \mathbb{R}^n smoothly and the orbits of this action are concentric spheres centered at the origin. Thus, $\mathbb{R}^n/O(n) \approx [0,\infty)$ which is not a smooth manifold.

- (vi) **Theorem.** Let *G* be a Lie group and H < G in an algebraic subgroup. Then the map $G \rightarrow G/H$ is continuous and open. Furthermore, G/H is Hausdorff if and only if *H* is closed.
- (vii) **Definition.** The action of a Lie group *G* on a manifold *X* is said to be free if $g \cdot x = x$ for any $g \in G$ and $x \in X$, then it would imply that g = e.

1.3.3 Discrete groups and properly discontinuous actions

- (i) **Definition.** A *discrete group* Γ is a countable group with the discrete topology.
- (ii) **Remark.** A discrete group is a zero-dimensional Lie group.
- (iii) **Definition.** A discrete group Γ is said to act *properly discontinuously* on a manifold \tilde{M} if the action is C^{∞} satisfying the following conditions.
 - (a) Each $x \in \tilde{M}$ has a neighborhood $U \ni x$ such that $\{h \in \Gamma : h(U) \cap U \neq \emptyset\}$ is finite.
 - (b) If $x, y \in \tilde{M}$ are not in the same orbit, then there exists neighborhoods $U \ni x$ and $V \ni y$ such that $U \cap \Gamma(V) = \emptyset$.
- (iv) **Remark.** If a discrete group Γ acts properly discontinuously on a manifold \tilde{M} , then \tilde{M}/Γ is Hausdorff.
- (v) **Definition.** Let \tilde{M} and M be smooth manifolds, and let $\pi : \tilde{M} \to M$ be a smooth and surjective map. The π is said to be a *covering map* if at each $p \in M$ there exists a connected neighborhood $U \ni p$ such that:
 - (a) $\pi^{-1}(U) = \bigsqcup_{\alpha} V_{\alpha}$, where V_{α} is open, and
 - (b) for each α , $\pi|_{V_{\alpha}} : V_{\alpha} \to U$ is a diffeomorphism.

A neighborhood *U* satisfying properties (a) and (b) is a called an *evenly covered neighborhood*. If there exists a covering map $\pi : \tilde{M} \to M$, then the manifold \tilde{M} is said to be a *covering manifold* of *M*.

(vi) **Theorem.** Let Γ be discrete group that acts freely and properly discontinuously on a manifold \tilde{M} , there exists a unique C^{∞} structure on $M = \tilde{M}/\Gamma$ such that \tilde{M} is a covering manifold of M.

- (vii) **Remark.** The rank of a covering map $\pi : \tilde{M} \to M$ equals $\dim(M) = \dim(\tilde{M})$ since it is a local diffeomorphism.
- (viii) **Lemma** Let *G* be a Lie group and Γ an algebraic subgroup of *G*. Then there exists a neighborhood $U \ni e$ such that $\Gamma \cap U = \{e\}$ if and only if Γ is a discrete subspace, in which case $\overline{\Gamma} = \Gamma$.
- (ix) **Theorem**. Any discrete subgroup Γ of a Lie group *G* acts freely and properly discontinuously on *G* by left multiplication.
- (x) **Corollary.** If Γ is a discrete subgroup of a Lie group *G*, then G/Γ is a C^{∞} manifold and $\pi: G \to G/\Gamma$ is smooth.
- (xi) **Theorem.** Let $\pi : \tilde{M} \to M$ be the covering of a smooth manifold M by a connected smooth manifold \tilde{M} . Then the *group of deck transformations*

$$\operatorname{Deck}(\pi) := \{ f \in \operatorname{Diffeo}(M) : f \circ \pi = \pi \}$$

acts freely and properly discontinuously on \tilde{M} and the quotient map π_1 : $\tilde{M} \to \tilde{M}/\text{Deck}(p)$ is a covering map. If $\text{Deck}(\pi)$ acts transitively on the fibers of π , then π_1 and $\tilde{M}/\text{Deck}(\pi)$ can be naturally identified with π and M, respectively.

- (xii) Examples of discrete group actions.
 - (a) The action $\mathbb{Z}_2 \times S^n \to S^n$ defined by ([1], x) $\mapsto -x$ is a free and properly discontinuous action and under this action, $S^n/\mathbb{Z}_2 \approx \mathbb{R}P^n$. Thus, by Theorem 1.3.3 (xi), it follows that the quotient map $S^n \to \mathbb{R}P^n$ is a covering map and S^n is a covering manifold of $\mathbb{R}P^n$.
 - (b) The action $\mathbb{Z}^n \times \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$((k_1, ..., k_n), (x_1, ..., x_n)) \mapsto (x_1 + k_1, ..., x_n + k_n)$$

is a free and properly discontinuous action and under this action, $\mathbb{R}^n/\mathbb{Z}^n \approx T^n = \prod_{i=1}^n S^1$. Thus, by Theorem 1.3.3 (xi), it follows that the quotient map $\mathbb{R}^n \to T^n$ is a covering map and \mathbb{R}^n is a covering manifold of T^n .

2 Vector fields on manifolds

2.1 Tangent space at a point on a manifold

(i) **Definition.** Let *M* be a smooth manifold. Given any $p \in M$ consider the collection

 $C_p = \{f : U (\subset M) \to \mathbb{R} : f \in C^{\infty}(U), U \text{ is open, and} U \text{ contains a neighborhood of } p\}.$

Define an equivalence relation on C_p given by $f \sim g$ if f and g agree on some neighborhood of p. Then $\mathscr{C}^{\infty}(p) := C_p / \sim$ is called *algebra of germs* of C^{∞} functions at p.

- (ii) **Remark.** Given a coordinate neighborhood (U, φ) of $p \in M$, the induced algebra homomorphism $\varphi^* : \mathscr{C}^{\infty}(\varphi(p)) \to \mathscr{C}^{\infty}(p)$ defined by $\varphi^*(f) = f \circ \varphi$ is an isomorphism of algebras of germs of C^{∞} functions.
- (iii) **Definition.** The *tangent space* $T_p(M)$ *to* M *at* p is the set of all mappings $\{\mathscr{C}^{\infty}(p) \to \mathbb{R}\}$ satisfying the following conditions for all $\alpha, \beta \in R$, $f, g \in \mathscr{C}^{\infty}(p)$, and $X_p, Y_p \in T_p(M)$.
 - (a) $X_p(\alpha f + \beta g) = \alpha X_p(f) + \beta X_p(g)$. (Linearity)
 - (b) $X_p(fg) = X_p(f)g(p) + f(p)X_p(g)$. (Leibnitz rule)
 - (c) The vector space operations:
 - (1) $(X_p + Y_p)(f) = X_p(f) + Y_p(f).$
 - (2) $(\alpha X_p)(f) = \alpha X_p(f).$

A tangent vector to M at $p \in M$ is any $X_p \in T_p(M)$.

- (iv) **Theorem.** Let $F: M \to N$ be a C^{∞} map of smooth manifolds, and let $p \in M$. Then:
 - (a) The map $F^*: \mathscr{C}^{\infty}(f(p)) \to \mathscr{C}^{\infty}(p)$ defined by $F^*(f) = f \circ F$ is an algebra homomorphism.
 - (b) The homomorphism F^* the induces a dual homomorphism $F_*: T_p(M) \to T_{F(p)}(N)$ defined by $F_*(X_p)(f) = X_p(F^*(f))$.
- (v) Corollary.

- (a) If $F: M \to M$ is the identity map on a smooth manifold M, then both F^* and F_* are identity isomorphisms.
- (b) If $H = G \circ F$ is a composition of C^{∞} maps on smooth manifolds, then $H^* = F^* \circ G^*$ and $H_* = G_* \circ F_*$.
- (vi) **Corollary.** If $F: M \to N$ is a diffeomorphism of smooth manifold M onto an open set of a smooth manifold N, then each $p \in M$, the homomorphism $F_*: T_p(M) \to T_{F(p)}(N)$ is an isomorphism.
- (vii) **Remark.** Let *M* be a smooth *n*-manifold and let (U, ϕ) be a coordinate neighborhood of $p \in M$. Then by Corollary 2.1 (vi), ϕ induces an isomorphism $\varphi_* : T_p(M) \to T_{\varphi(p)}(\mathbb{R}^n)$ at each $p \in U$. Consequently, $\varphi_* : T_{\varphi(p)}(\mathbb{R}^n) \to T_p(M)$ is an isomorphism and for $1 \le i \le n$, the images $E_{ip} = \varphi_*^{-1}\left(\frac{\partial}{\partial x_i}\right)$ of the natural basis at $\varphi(p) \in \varphi(U)$ determines a basis of $T_p(M)$.
- (viii) **Corollary.** Let *M* be a smooth *n*-manifold.
 - (a) To each coordinate neighborhood $(U\varphi)$ of a smooth *n*-manifold *M*, there corresponds a natural basis E_{1p}, \ldots, E_{np} of $T_p(M)$, for all $p \in U$. Consequently,

$$\dim(T_p(M)) = n = \dim(M).$$

(b) Let *f* be a C^{∞} function defined on a neighborhood of *p* and let $\hat{f} = f \circ \varphi^{-1}$ be its expression in local coordinates relative to (U, φ) . Then:

$$E_{ip}(f) = \left(\frac{\partial \hat{f}}{\partial x_i}\right)_{\varphi(p)}$$

(c) In particular, if $x_i(q)$ is the i^{th} coordinate function, then:

$$X_p = \sum_{i=1}^n (X_p(x_i)) E_{ip}.$$

(ix) **Remark.** Let *M* be a smooth *n*-manifold and let (U, ϕ) be a coordinate neighborhood of $p \in M$. Since $E_{ip} = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i} \right)$, we have:

$$E_{ip}(f) = \varphi_*^{-1}\left(\frac{\partial}{\partial x_i}\right)(f) = \frac{\partial}{\partial x_i}(f \circ \varphi^{-1})\bigg|_{x = \varphi(p)}.$$

In particular, if $f(q) = x_i(q)$ and $X_p = \sum_{j=1}^n \alpha_j E_{jp}$, then we have

$$X_p(x_i) = \sum_{j=1}^n \alpha_j (E_{jp}(x_i)) = \sum_{j=1}^n \alpha_j \left(\frac{\partial x_i}{\partial x_j}\right)_{\varphi(p)} = \alpha_i$$

- (x) **Theorem.** Let *M* and *N* be smooth manifolds of dimensions *m* and *n*, respectively, and let $F: M \to N$ be a smooth map. Let (U, φ) and (V, ψ) be coordinate neighborhoods such that $F(U) \subset V$, and in these coordinates let *F* be given by $y_i = f(x, ..., x_n)$, $1 \le i \le m$. Let *p* be a point with coordinates $a = (a_1, ..., a_n)$, $E_{ip} = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i}\right)$, $1 \le i \le m$ be a basis of $T_p(M)$, and $\tilde{E}_{jF(p)} = \varphi_*^{-1} \left(\frac{\partial}{\partial y_j}\right)$, $1 \le j \le n$, be a basis of $T_{F(p)}(N)$. Then:
 - (a) For $1 \le i \le n$, we have:

$$F_*(E_{ip}) = \sum_{j=1}^m \left(\frac{\partial y_j}{\partial x_i}\right)_a \tilde{E}_{jF(p)}$$

(b) In terms of components, if $X_p = \sum_{i=1}^n \alpha_i E_{ip}$ and $F_*(X_p) = \sum_{j=1}^m \tilde{E}_{jF(p)}$, then for $1 \le j \le m$, we have:

$$\beta_j = \sum_{i=1}^n \alpha_i \left(\frac{\partial y_j}{\partial x_i} \right)_a$$

- (xi) **Remark.** Let *M* be a smooth submanifold of *N*, and let $F : M \to N$ be an immersion or an inclusion of *M* into *N*. Then we have rank(*F*) = dim(*M*), and hence, $F_* : T_p(M) \to T_p(N)$ is injective (i.e, an isomorphism onto its image). Consequently, $T_p(M)$ can be identified with a subspace of $T_p(N)$.
- (xii) Applications of Theorem 2.1 (x).
 - (a) *Change of basis formula for* $T_p(M)$. We apply Theorem 2.1 (x) to the maps $F = \tilde{\varphi} \circ \varphi^{-1}$ and F^{-1} , which give the change of coordinates between the coordinate neighborhoods (U, φ) and $(\tilde{U}, \tilde{\varphi})$ in $U \cap \tilde{U}$ on M. For $p \in U \cap \tilde{U}$, let $E_{ip} = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i}\right)$ and $\tilde{E}_{ip} = \tilde{\varphi}_*^{-1} \left(\frac{\partial}{\partial \tilde{x}_i}\right)$ be the bases

of $T_p(M)$ corresponding to (U, φ) and $(\tilde{U}, \tilde{\varphi})$, respectively. Then we have:

$$E_{ip} = \sum_{k} \left(\frac{\partial \tilde{x}_{k}}{\partial x_{i}} \right)_{\varphi(p)} \tilde{E}_{kp}, 1 \le i \le n, \text{ and}$$
$$\tilde{E}_{jp} = \sum_{\ell} \left(\frac{\partial x_{\ell}}{\partial \tilde{x}_{j}} \right)_{\tilde{\varphi}(p)} \tilde{E}_{\ell p}, 1 \le \ell \le n.$$

In particular, if:

$$X_p = \sum_{i=1}^n \alpha_i E_{ip} = \sum_{j=1}^n \beta_j \tilde{E}_{jp},$$

then:

$$\alpha_i = \sum_{j=1}^n \beta_j \frac{\partial x_i}{\partial \tilde{x}_j} \text{ and } \beta_j = \sum_{i=1}^n \alpha_i \frac{\partial \tilde{x}_j}{\partial x_i}.$$

(b) *Tangent to a space curve.* Let $F : (a, b) \to N$ be a C^{∞} curve. Then for $t_0 \in (a, b)$, we have $\left(\frac{d}{dt}\right)_{t_0}$ is a basis for $T_{t_0}(M)$. If $p = F(t_0)$ and $f \in \mathscr{C}^{\infty}(p)$, then

$$F_*\left(\frac{d}{dt}\right)(f) = \left(\frac{d}{dt}(f \circ F)\right)_{t_0}$$

which is called the to the curve F(t) at p. In particular, if (U, φ) are the coordinates around p, then in local coordinates F is given by:

$$\hat{F}(t) = (\varphi \circ F)(t) = (x_1(t), \dots, x_n(t))$$

where each x_i is a function on *U*. To simplify notation, we write $x_i(t) = (x_i \circ F)(f)$, and we have:

$$F_*\left(\frac{d}{dt}\right)(x_i) = \left(\frac{dx_i}{dt}\right)_{t_0} := \dot{x}_i(t_0).$$

Applying Theorem 2.1 (x) (with $E_{1p} = \frac{d}{dt}$ and the *Es* replaces with \tilde{E} s), we have:

$$F_*\left(\frac{d}{dt}\right) = \sum_{i=1}^n \dot{x}_i(t) E_{ip}.$$

When $N = \mathbb{R}^n$, $\frac{d}{dt}$ is the velocity vector at the point $p = (x_1(t_0), \dots, x_n(t_0))$ whose components (at p) are $(\dot{x}_1(t_0), \dots, \dot{x}_n(t_0))$. This is the vector $v_p \in T_p(\mathbb{R}^n)$ with initial point $p = x(t_0)$ and terminal point

$$(x_1 + \dot{x}_1(t_0), \dots, x_n + \dot{x}_n(t_0)).$$

If $\operatorname{rank}_{t_0}(F) = 1$, then F_* is an isomorphism onto its image, and we identify the tangent space to the image curve at p with the subspace of $T_p(\mathbb{R}^n)$ spanned by v_p . On the other hand, if $\operatorname{rank}_{t_0}(F) = 0$, then $F_*\left(\frac{d}{dt}\right) = 0$.

2.2 Vector fields

- (i) **Definition.** A vector field X of class C^r on a smooth manifold M is a mapping $X : M \to T(M) = \bigcup_{p \in M} T_p(M)$ that assigns to each $p \in M$ a vector $X_p \in T_p(M)$ whose components in the local frames $\{E_{1p}, \ldots, E_{np}\}$ of any coordinate neighborhood (U, φ) of p are of class C^r on U.
- (ii) Examples of vector fields.
 - (a) The unit gravitational vector field *G* on $M = \mathbb{R}^3 \{0\}$ of an object of unit mass at 0 is a smooth mapping $G: M \to T(M)$ defined by

$$G(p) = \sum_{i=1}^{3} -\frac{x_i}{r^3} \frac{\partial}{\partial x_i} \bigg|_p,$$

where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

- (b) Given any coordinate neighborhood (U, φ) on a smooth manifold M, for each $1 \le i \le n$, $E_i = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i} \right)$ having component δ_{ij} is a C^{∞} vector field on U. The set $\{E_1, \dots, E_n\}$ form a basis for $T_p(M)$ at each $p \in U$ called the coordinate frame associated to (U, φ) .
- (c) It is known there non-vanishing C^{∞} vector fields on even-dimensional spheres, while odd-dimensional spheres have at least one non-vanishing vector field. For example on

$$S^3 = \{(x_1, x_2, x_3, x_4) : \sum_{i=1}^4 x_i^2 = 1\},\$$

there are three mutually perpendicular unit vector fields given by:

$$X = -x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2} + x_4 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_4}$$
$$Y = -x_3 \frac{\partial}{\partial x_1} - x_4 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + x_2 \frac{\partial}{\partial x_4}$$
$$Z = -x_4 \frac{\partial}{\partial x_1} + x_3 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4}$$

- (iii) **Definition.** A smooth manifold M with a C^{∞} -vector field of bases is said to be *parallelizable*.
- (iv) **Lemma**. Let *N* be a submanifold of *M*, and let *X* be a C^{∞} -vector field on *M* such that for each $p \in N$, $X_p \in T_p(N)$. Then $X|_N$ is a C^{∞} -vector field.
- (v) **Remark.** Let N, M be smooth manifolds, and let $F : N \to M$ be a smooth map. Then given a vector field X on N, $F_*(X_p)$ is a vector at $T_{F(p)}(M)$. However, this process does not in general induce a vector field on M. This is because:
 - (a) *F* need not be surjective and
 - (b) even when *F* is surjective, there might exist $p_1, p_2 \in N$ with $F(p_i) = q$ such that $F_*(X_{p_1}) \neq F_*(X_{p_2})$.
- (vi) **Definition.** Let N, M be smooth manifolds, and let $F : N \to M$ be a smooth map. Suppose there exists a vector field Y on M such that for each $q \in M$ and $p \in F^{-1}(q) \in N$, we have $F_*(X_p) = X_q$. Then we say that the vector fields X and Y are F-related and we write $Y = F_*(X)$
- (vii) **Theorem.** If $F : N \to M$ is a diffeomorphism, then each vector field *X* on *N* is *F*-related to a uniquely determined vector field *Y* on *M*.
- (viii) **Definition.** Let *M* be a smooth manifold and $F: M \to M$ be a diffeomorphism. Then *X* is said to be *F*-invariant if $F_*(X) = X$.
- (ix) **Definition.** Let *G* be a Lie group and for a fixed $g \in G$, let $L_g : G \to G$ be left multiplication by *g*, that is, $L_g(h) = gh$, for all $h \in G$. Then a vector field *X* on *G* is a said to *left-invariant* (or invariant under left translations) if $(L_g)_*(X) = X$ for all $g \in G$.
- (x) **Theorem.** Let *G* be a Lie group and $e \in G$ be the identity element. Then each $X_e \in T_e(G)$ determines a unique C^{∞} -vector field *X* on *G* that is left-invariant. In particular, *G* is parallelizable.
- (xi) **Corollary.** Let G_1 and G_2 be Lie groups and $F : G_1 \to G_2$ be a homomorphism. Then to each left-invariant vector field X on G_1 , there exists a uniquely determined left-invariant vector field Y on G_2 such that $F_*(X) = Y$.

2.3 Flows on manifolds

(i) **Definition.** Let θ : ℝ → Diffeo(M) defined by θ(t) = θ_t be a C[∞]-action on a smooth manifold M. Then θ defines a C[∞]-vector field X^θ on M given by X^θ(p) = X^θ_p, where X_pθ : C[∞](p) → ℝ is defined by

$$X_p^{\theta}(f) = \lim_{\Delta t \to 0} [f(\theta_{\Delta t}(p)) - f(p)].$$

The vector field X^{θ} is called the *infinitesimal generator of* θ .

- (ii) **Definition.** Let θ : $G \to \text{Diffeo}(M)$ defined by $\theta(g) = \theta_g$ be a C^{∞} -action on a smooth manifold M. Then a vector field X on M is said to G-invariant if $(\theta_g)_*(X) = X$ for all $g \in G$.
- (iii) **Theorem.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^{∞} -action on a smooth manifold M. Then X^{θ} is invariant under θ , that is, $(\theta_t)_*(X^{\theta}) = X^{\theta}$, for all $t \in \mathbb{R}$.
- (iv) **Corollary.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^{∞} -action on a smooth manifold *M*. If $X_p = 0$, then for each *q* in the orbit of *p*, we have $X_q = 0$.
- (v) Theorem. Let θ : R → Diffeo(M) defined by θ(t) = θt be a C[∞]-action on a smooth manifold M. The orbit of p given is either a single point or an immersion of R in M by the map t → θt(p) depending on whether or not Xp = 0.
- (vi) **Remark.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^{∞} -action on a smooth manifold M. For $t_0 \in \mathbb{R}$, let $\frac{d}{dt}$ be standard basis of $T_{t_0}(\mathbb{R})$, and let $F(t) = \theta_t(p)$. Since we have

$$F_*\left(\frac{d}{dt}\right) = X_{\theta_{t_0}}(p) = X_{F(t_0)},$$

it follows that at each $p \in M$, X_p is tangent to orbit of p and is the velocity vector to $t \rightarrow F(t)$ in M.

- (vii) **Definition.** Given a vector field *X* on a smooth manifold *M*, we say that a curve $F: (a, b) \rightarrow M$ is an *integral curve* of *X* if $\frac{dF}{dt} = X_{F(t)}$ for all $t \in (a, b)$.
- (viii) **Remark.** Let $\theta : \mathbb{R} \times M \to M$ be a C^{∞} -action on a smooth manifold M. Then each orbit of θ is an integral curve of X^{θ} , that is, $\dot{\theta}(t, p) = X_{\theta(t, p)}$.

- (ix) Examples of \mathbb{R} -actions.
 - (a) Let $M = \mathbb{R}^2$, and $\theta : \mathbb{R} \times M \to M$ be defined by $\theta(t, (x, y)) = (x + t, y)$. Then $X^{\theta} = \frac{\partial}{\partial x}$.
 - (b) If M' = R² \ {(0,0)}, then the θ from (a) does not restrict to an action on M'. However, if we consider the open set W ⊂ R × M' given by

$$W = \left(\bigcup_{y \neq 0} \mathbb{R} \times \{(x, y)\}\right) \cup \{(t, (x, 0)) : x(x + t) > 0\},\$$

then $\theta' = \theta|_W$ preserves most of the properties of θ .

(x) **Definition** Let *M* be a smooth manifold and $W \subset \mathbb{R} \times M$ be an open set such that for each $p \in M$, there exists real numbers $\alpha(p) < 0 < \beta(p)$ such that

$$W \cap (\mathbb{R} \times \{p\}) = (\alpha(p), \beta(p)) \times \{p\},\$$

so that

$$W = \bigcup_{p \in M} (\alpha(p), \beta(p)) \times \{p\}.$$

Then a *local one-parameter action (or a flow)* on *M* is a C^{∞} map $\theta : W \to M$ such that:

- (a) $\theta_0(p) = p$ for all $p \in M$.
- (b) If $(s, p) \in W$, we have:
 - (1) $\alpha(\theta_s(p)) = \alpha(p) s$,
 - (2) $\beta(\theta_s(p)) = \beta(p) s$, and
 - (3) for any $t \in (\alpha(p) s, \beta(p) s)$, we have $\theta_{t+s}(p) = \theta_t \circ \theta_s(p)$.
- (xi) **Remark.** Let θ : $W \rightarrow M$ be a flow on a smooth manifold M.
 - (a) Since *W* is open and $(0, p) \in W$, there exists a neighborhood $U \ni p$ such that $(-\delta, \delta) \times U \subset W$ for sufficiently small δ . Thus, θ also has a well-defined infinitesimal generator X^{θ} associated to it.
 - (b) θ satisfies $\theta_t^{-1} = \theta_{-t}$, wherever it is well-defined. In general, θ_t need not define a map on all of *M*.
 - (c) Let $V_t \subset M$ be the domain of definition of θ_t , that is, $V_t = \{p \in M : (t, p) \in W\}$. For all $p \in V_t$, we have $(\theta_t)_*(X_p^{\theta}) = X_{\theta_t(p)}$.

- (d) The curve defined $F(t) = \theta_t(p)$, for $t \in (\alpha(p), \beta(p))$ is a C^{∞} curve, which is an immersion of $(\alpha(p), \beta(p))$ if $X_p \neq 0$, and is a single point, if $X_p = 0$.
- (xii) **Theorem.** Let θ : $W \to M$ be a flow on a smooth manifold M and let $V_t \subset M$ be the domain of definition of θ_t , that is, $V_t = \{p \in M : (t, p) \in W\}$. Then:
 - (a) V_t is an open set for all t and
 - (b) $\theta_t: V_t \to V_{-t}$ is a diffeomorphism with $\theta_t^{-1} = \theta_{-t}$.
- (xiii) **Theorem.** Let $\theta : W \to M$ be a flow on a smooth manifold M and let X^{θ} be its associated infinitesimal generator. If $p \in M$ is such that $X_p^{\theta} \neq 0$, then there exists a coordinate neighborhood (V, ψ) around p, a v >, and a corresponding neighborhood $V' \ni p$ with $V' \subset V$ such that in local coordinates $\theta|_{(-v,v)\times V'}$ is given by $(t, y_1, \dots, y_n) \to (y_1 + t, y_2, \dots, y_n)$. Moreover, in these coordinates, we have $X = \psi_*^{-1} \left(\frac{\partial}{\partial x_1}\right)$ for every point of V'.

2.4 Existence of integral curves

- (i) **Theorem.** Suppose that for $1 \le i \le n$, $f_i(t, x, ..., x_n)$ are C^r functions on $(-\epsilon, \epsilon) \times U$, where $r \ge 1$ and $U \subset \mathbb{R}^n$ is open. Then for each $x \in U$, there exists $\delta > 0$ and a neighborhood $V \ni x$ with $V \subset U$ such that:
 - (a) For each $a = (a_1, ..., a_n) \in V$, there exists an *n*-tuple of C^{r+1} functions $x(t) = (x_1(t), ..., x_n(t))$ with $x_i : (-\delta, \delta) \to U$ satisfying the first-order system of ODEs:

$$\frac{dx_i}{dt} = f_i(t, x), \ 1 \le i \le n \tag{(*)}$$

with initial conditions

$$x_i(0) = a_i, \ 1 \le i \le n.$$
(**)

- (b) For each $a = (a_1, ..., a_n) \in V$, the $x_i(t)$ are uniquely determined in the sense that any other function $\bar{x}_i(t)$ satisfying (*) and (**) must agree with x(t) on an open interval around t = 0.
- (c) As the functions $x_i(t)$ are uniquely determined by $a = (a_1, ..., a_n) \in V$, we can write them as $x_i(t, a_1, ..., a_n)$ for $1 \le i \le n$, in which case they are of class C^r in all the variable and determine a C^r map $(-\delta, \delta) \times V \to U$.

- (ii) **Definition.** If the right hand side of equation (*) in Theorem 2.4(i) above is independent of *t*, then we say that the system of ODEs is *autonomous*.
- (iii) **Remark.** Consider an autonomous system of ODEs as in Theorem 2.4(i), where the f_i depend only on $(x_1, ..., x_n)$.
 - (a) Define on $U \subset \mathbb{R}^n$ a C^{∞} vector field X by $X = \sum_{i=1}^n f_i(x) \frac{\partial}{\partial x_i}$. An integral curve of X is a smooth mapping $F : (\alpha, \beta) \to U$ such that $\dot{F}(t) = X_{F(t)}$ for all $x \in (\alpha, \beta)$. Since $F(t) = (x_1(t), \dots, x_n(t))$, we have:

$$\dot{F}(t) = X_{F(t)} \iff \frac{dx_i}{dt} = f_i(x_1(t), \dots, x_n(t)), \ 1 \le i \le n,$$

that is, $x(t) = (x_1(t), \dots, x_n(t))$ are a solution of equation (*).

- (b) By Theorem 2.4(i), for each *a* in a neighborhood $V \ni x$, there exists a unique F(t) satisfying F(0) = a and $F: (-\delta, \delta) \to U$ for every $a \in V$.
- (c) If $F(t, a) = (x_1(t, a), \dots, x_n(t, a))$, then $\dot{x}_i(t, a) = f_i(x(t, a))$ and $x_i(0, a) = a_i$, where each is x_i is C^{∞} on $((-\delta, \delta) \times V)$, an open subset of $\mathbb{R} \times U$.
- (iv) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then:
 - (a) For each $p \in M$, there exists a neighborhood *V* and a real number $\delta > 0$ such that there exists a C^{∞} mapping:

$$\theta^V: (-\delta, \delta) \times V \to M$$

satisfying

$$\dot{\theta}^V(t,q) = X_{\theta^V(t,q)}$$

and $\theta^V(0, q) = q$ for all $q \in V$.

- (b) If *F*(*t*) is an integral curve of *X* with *F*(0) = *q* ∈ *V*, then *F*(*t*) = θ^V(*t*, *q*), for all |*t*| < δ. In particular, this mapping is unique in the sense that if (*V*₁, δ₁) is another such pair for *p* ∈ *M*, then θ^V = θ^{V₁} on the common part of their domains.
- (v) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then for each $p \in M$, there exists a uniquely determined open interval $(\alpha(p), \beta(p))$ having the following properties:
 - (a) There exists a C^{∞} integral curve F(t) defined on $(\alpha(p), \beta(p))$ such that F(0) = p.

- (b) If *G* is another integral curve with G(0) = p, then the interval of definition of *G* is contained in $(\alpha(p), \beta(p))$ and $F(t) \equiv G(t)$ on this interval.
- (vi) **Remark.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. By Theorem 2.4 (v), two curves of *X* defined on open intervals I_1 and I_2 that co-incide on $I_1 \cap I_2 \neq \emptyset$, define an integral curve on $I_1 \cup I_2$. So, let $F(t) = \theta^X(t, p)$ be the unique maximal integral curve such that F(0) = p and let $W = \bigcup_{p \in M} (\alpha(p), \beta(p)) \times \{p\}$. Then:
 - (a) *W* and θ^X are uniquely determined by *X*, and *W* is the domain of θ^X .
 - (b) *W* and θ^X satisfy the following properties.
 - (1) We have $\{0\} \times M \subset W$ and $\theta^X(0, p) = p$ for all $p \in M$.
 - (2) For each $p \in M$, if $\theta_p^X(t) = \theta^X(t, p)$, then $\theta_p^X : (\alpha(p), \beta(p)) \to M$ is C^{∞} maximal integral curve.
 - (3) For each $p \in M$, there exists a neighborhood $V \ni p$ and a $\delta > 0$ such that $(-\delta, \delta) \times V \subset W$ and θ^X is C^{∞} on $(-\delta, \delta) \times V$.
- (vii) **Corollary.** In the notation of Remark 2.4 (vi) above, let $s \in (\alpha(p), \beta(p))$ and $q = \theta_p^X(s) = \theta^X(s, p)$ be the corresponding point of the integral curve determined by *p*. Then:
 - (a) $\alpha(q) = \alpha(p) s$ and $\beta(q) = \beta(p) s$. Thus, $t \in (\alpha(q), \beta(g))$ if and only if $t + s \in (\alpha(p), \beta(p))$ and
 - (b) $\theta^X(t,\theta^X(s,p)) = \theta^X(t+s,p).$
- (viii) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then:
 - (a) The domain W of θ^X is open in $\mathbb{R} \times M$ and
 - (b) θ^X is C^{∞} onto M.
- (ix) **Definition.** Let *M* be a smooth manifold, and for i = 1, 2, let $\theta_i : W_i \to M$ be one-parameter group actions (or flows) on *M*. Then we say $\theta_1 \cong \theta_2$ if $\theta_2(x) = \theta_2(x)$ for all $x \in W_1 \cap W_2$.
- (x) **Theorem.** Let *M* be a smooth manifold.
 - (a) For i = 1, 2, let $\theta_i : W_i \to M$ be one-parameter group actions (or flows) on *M*. Then: $\theta_1 \cong \theta_2$ if and only if $X^{\theta_1} = X^{\theta_2}$.

- (b) Furthermore, every C^{∞} vector field *X* is the infinitesimal generator of a unique flow $\theta^X : W \to M$ (called the *maximal flow generated by X*) whose domain *W* is maximal among all $\tilde{\theta} \cong \theta$.
- (xi) **Lemma.** Let $\theta^X : W \to M$ be the flow with maximal domain W and infinitesimal generator X acting on a smooth manifold M. For $p \in M$, let $\theta_p^X : (\alpha(p), \beta(p)) \to M$ defined by $\theta_p^X(t) = \theta^X(t, p)$ be the integral curve of X through p. If $\beta(p) < \infty$ and $\{t_n\} \subset (\alpha(p), \beta(p))$ is a sequence such that $t_n \to \beta(p)$, then $\{\theta^X(t_n, p)\}$ cannot lie on a compact set. In particular, $\{\theta^X(t_n, p)\}$ cannot approach a limit in M. A similar statement holds for $\alpha(p)$ with $\alpha(p) < \infty$.
- (xii) **Corollary.** Let $\theta^X : W \to M$ be the flow with maximal domain *W* and infinitesimal generator *X* acting on a smooth manifold *M*. For $p \in M$, let $\theta_p^X : (\alpha(p), \beta(p)) \to M$ defined by $\theta_p^X(t) = \theta^X(t, p)$ be the integral curve of *X* through *p*.
 - (a) If $(\alpha(p), \beta(p))$ is a bounded interval, then the integral curve $\{\theta_p^X(t) : t \in (\alpha(p), \beta(p))\}$ is a closed subset of *M*.
 - (b) If $X_p = 0$, then $(\alpha(p), \beta(p)) = \mathbb{R}$ and if X = 0 outside a compact subset of *M*, then $W = \mathbb{R} \times M$.
- (xiii) **Definition.** A C^{∞} vector field *X* on a smooth manifold *M* is *complete* if it generates a global action of \mathbb{R} on *M*, that is, the domain of θ^X is $\mathbb{R} \times M$.
- (xiv) **Corollary.** If *M* is a compact smooth manifold, then every vector field on *M* is complete.
- (xv) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M* and let $F: M \to M$ be a diffeomorphism. Then $\theta^X : W \to M$ be the maximal flow generated by *X*. Then *X* is invariant under *F* if and only if $F(\theta(t, p) = \theta(t, F(p)))$, whenever both sides are well-defined.
- (xvi) **Remark.** The main assertion in Theorem 2.4 (xv) can equivalently stated as $F_*(X) = X$ if and only if $\theta_t \circ F = F \circ \theta_t$ for all $t \in V_t$.
- (xvii) **Corollary.** A left invariant vector field on a Lie group *G* is complete.

2.5 One-parameter subgroups

- (i) **Definition.** Let *G* be a Lie group. A *one-parameter subgroup* of *G* is the image $F(\mathbb{R} \text{ of some Lie group homomorphism } F : \mathbb{R} \to G$.
- (ii) **Remark.** Let *G* be Lie group and let $F : \mathbb{R} \to G$ be a Lie group homomorphism. If $\varphi : G \times M \to M$ is an action of *G* on *M*, then φ induces an \mathbb{R} -action $\varphi_F : \mathbb{R} \times M \to M$ on *M* via *F* defined by $\varphi_F(t, p) = \varphi(F(t), p)$.
- (iii) Example of one-parameter actions.
 - (a) Let $G = GL(3,\mathbb{R})$. Consider the homomorphism $F_1 : \mathbb{R} \to G$ defined by

$$F_1(t) = \begin{pmatrix} e^{at} & 0 & 0\\ 0 & e^{at} & 0\\ 0 & 0 & e^{at} \end{pmatrix},$$

and homomorphism $F_2 : \mathbb{R} \to G$ be defined by

$$F_2(t) = \begin{pmatrix} 1 & at & bt + \frac{1}{2}act^2 \\ 0 & 1 & ct \\ 0 & 0 & 1 \end{pmatrix}.$$

Since GL(3, \mathbb{R}) has a natural action on \mathbb{R}^3 , by Remark 2.5 (ii), each F_i induces an action of \mathbb{R} on \mathbb{R}^3 . For example F_1 induces that action $\theta_1(t, x_1, x_2, x_3) = (e^{at}x_1, e^{at}x_2, e^{at}x_3)$ with $X_x^{\theta} = \dot{\theta}(a, x) = \sum_{i=1}^3 ax_i \frac{\partial}{\partial x_i}$.

(b) Consider the homomorphism $F : \mathbb{R} \to SO(3)$ defined by

$$F(t) = \begin{pmatrix} \cos(at) & \sin(at) & 0\\ -\sin(at) & \cos(at) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Since SO(3) acts on S^2 by rotations, the action induces an \mathbb{R} -action θ on S^2 (via *F*), which defines a one-parameter group of rotations about the x_3 -axis given by:

$$\theta(t, x_1, x_2, x_3) = (x_1 \cos(at) + x_2 \sin(at), -x_1 \sin(at) + x_2 \cos(at), x_3).$$

The orbits under this action are the latitudes of S^2 and X^{θ} is tangent to them and orthogonal to the x_3 -axis.

(c) A Lie group acts on itself by right translation (multiplication) defined by $\varphi: G \to \text{Diffeo}(G)$ given by $\varphi(a) = R_a$. Then φ induces an \mathbb{R} -action $\theta: \mathbb{R} \times G \to G$ via a homomorphism $F: \mathbb{R} \to G$ given by

$$\theta(t,g) = R_{F(t)}(g) = gF(t).$$

- (iv) **Theorem.** Let $F : \mathbb{R} \to g$ be a one-parameter subgroup of a Lie group *G* and let *X* be left-invariant vector field on *G* defined by $X_e = \dot{F}(0)$. Then $\theta(t, g) = R_{F(t)}(g)$ defines an action $\theta : \mathbb{R} \times G \to G$ such that $X^{\theta} = X$. Conversely, let *X* be a left-invariant vector field and $\theta : \mathbb{R} \times G \to G$ be the corresponding flow generated by *X*. Then $F(t) = \theta(t, e)$ is a one-parameter subgroup of *G* such that $\theta(t, g) = R_{F(t)}(g)$.
- (v) **Corollary.** Let *G* be a Lie group.
 - (a) There is a one-to-one correspondence between the elements of $T_e(G)$ and the one-parameter subgroups of G.
 - (b) For $Z \in T_e(G)$, let $\{F(t, Z) : t \in \mathbb{R}\}$, where $t \mapsto F(t, Z)$, be the unique corresponding one-parameter subgroup of *G*. Then $\mathbb{R} \times T_e(G) \to G$ is C^{∞} and satisfies F(t, sZ) = F(st, Z).

2.6 One-parameter subgroups of Lie groups

(i) **Definition.** The exponential e^X of a matrix $X \in M_n(\mathbb{R})$ is defined by:

$$e^{X} = 1 + \frac{X}{1!} + \frac{X^{2}}{2!} + \dots, \tag{\dagger}$$

whenever the series converges.

- (ii) **Theorem.** Consider the series (†) in Definition 2.6 (i) above.
 - (a) The series converges absolutely for all $X \in M_n(\mathbb{R})$ and uniformly on all compact subsets of $M_n\mathbb{R}$).
 - (b) The mapping exp : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by $\exp(A) = e^{tA}$ is C^{∞} and Im $\exp \subset \operatorname{GL}(n, \mathbb{R})$.
 - (c) If $A, B \in M_n(\mathbb{R})$ such that AB = BA, then $\exp(A + B) = \exp(A) \exp(B)$.
- (iii) **Corollary.** For an $A \in M_n(\mathbb{R})$, consider the map $F : \mathbb{R} \to GL(n, \mathbb{R})$ defined by $F(t) = e^{tA}$.

(a) $F(\mathbb{R})$ is an one-parameter subgroup of \mathbb{R} whose corresponding vector field is given by

$$\sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}} \right)_{I_n}.$$

- (b) All one parameter subgroups are of this form. Moreover, $\dot{F}(0) = A = (a_{ij})$.
- (iv) **Theorem.** Let *G* be a Lie group and let H < G be a Lie subgroup. Then the one parameter subgroups of *H* are those one-parameter subgroups $F(\mathbb{R}) < G$ such that $\dot{F}(0) \in T_e(H)$ considered as a subspace of $T_e(G)$.
- (v) **Corollary**. Let $G = GL(n, \mathbb{R})$ and let H < G be a Lie subgroup.
 - (a) The one-parameter subgroups *H* are all of form $F(\mathbb{R})$, where $F(t) = e^{tA}$.
 - (b) Moreover the entries of $A = (a_{ij})$ are components of the vector

$$\dot{F}(0) = \sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}}\right)_e \in T_e(G),$$

which is tangent to *H* at *e*.

(vi) Examples of one-parameter subgroups.

(a) If
$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \in M_n(\mathbb{R})$$
, then

$$e^{tA} = \begin{pmatrix} 1 & ta & \frac{1}{2}act^2 \\ 0 & 1 & tc \\ 0 & 0 & 1 \end{pmatrix} \in \mathrm{GL}(n,\mathbb{R}).$$

(b) Consider $H = O(n) < G = GL(n, \mathbb{R})$. Then

$$\mathfrak{o}(n) = \{A \in M_n(\mathbb{R}) : e^{tA} \in H, \forall t\} = \{A \in M_n(\mathbb{R}) : A^T = -A\}.$$

Hence, dim($\mathfrak{o}(n)$) = n(n-1)/2. A neighborhood of $O \in \mathfrak{o}(n)$ is mapped diffeomorphically by $X \mapsto e^x$ to a neighborhood of $I_n \in O(n)$.

- (vii) **Definition.** The *exponential mapping* exp : $T_e(G) \to G$ is given by exp(Z) = F(1, Z), where for $Z \in T_e(G)$, $t \mapsto F(t, Z)$ is unique one-parameter subgroup determined by Z.
- (viii) **Theorem.** Let *G* be a Lie group.
 - (a) The exponential mapping exp : $T_e(G) \to G$ is C^{∞} .
 - (b) For $Z \in T_e(G)$, let $\{F(t, Z) : t \in \mathbb{R}\}$, where $t \mapsto F(t, Z)$, be the unique one-parameter subgroup of *G* such that $\dot{F}(0) = Z$.
 - (c) The Jacobian matrix of exp at 0 is the identity matrix, that is, \exp_* is the identity.
 - (d) If *G* is a Lie subgroup of $GL(n, \mathbb{R})$, then for each $Z \in T_e(G)$, there exists $A = (a_{ij}) \in M_n(\mathbb{R})$ such that

$$Z = \sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}} \right)_e.$$

Moreover, for this *Z*, we have $\exp(tZ) = e^{tA}$.

2.7 Lie algebra of vector fields

- (i) **Notation.** Let *M* be a smooth manifold. We denote by $\mathfrak{X}(M)$, the module over $C^{\infty}(M)$ of all C^{∞} vector fields on *M*.
- (ii) We say a vector space L over R is a (real) *Lie algebra* if in addition to its vector space structure, it possesses a product map L × L → L taking the pair (X, Y) to the elements [X, Y] of L that satisfies the following properties.
 - (a) It is bilinear over \mathbb{R} : That is, for any $\alpha, \beta \in \mathbb{R}$ and $X_i, Y_i \in \mathcal{L}$ for i = 1, 2, we have:
 - (1) $[\alpha X_1 + \beta X_2, Y] = \alpha [X_1, Y] + \beta [X_2, Y].$
 - (2) $[X, \alpha Y_1 + \beta Y_2] = \alpha [X, Y_1] + \beta [X, Y_2].$
 - (b) It is skew-commutative: That is for any $X, Y \in \mathcal{L}$, we have:

$$[X, Y] = -[Y, X].$$

(c) It satisfies the Jacobi identity: That is, for any $X, Y, Z \in \mathcal{L}$, we have:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

- (iii) Examples of Lie algebras.
 - (a) The vector space \mathbb{R}^3 with the usual vector cross product \times is a Lie algebra.
 - (b) The vector space $M_n(\mathbb{R})$ with the product defined by [X, Y] = XY YX, for $X, Y \in M_n(\mathbb{R})$, is a Lie algebra.
- (iv) **Remark.** Let *M* be a smooth manifold. In general, given $X, Y \in \mathfrak{X}(M)$, the product *XY*, considered as an operator on *M*, does not determine a C^{∞} vector field.
- (v) **Lemma.** Let *M* be a smooth manifold. Given $X, Y \in \mathfrak{X}(M)$, we have $XY YX \in \mathfrak{X}(M)$ according to the prescription

$$(XY - YX)_p f = X_p(Yf) - Y_p(Xf),$$

where $f \in \mathscr{C}^{\infty}(p)$ and $Xf, Yf \in \mathscr{C}^{\infty}(p)$ are defined by $(Xf)(q) := X_q(f)$ and $(Yf)(q) := Y_q(f)$, for every *q* in some neighborhood of $U \ni p$.

- (vi) **Theorem** For a smooth manifold *M*, the space $\mathfrak{X}(M)$ with the product $(X, Y) \mapsto [X, Y]$ is a Lie algebra.
- (vii) **Definition.** Let *M* be a smooth manifold and let $X, Y \in \mathfrak{X}(M)$. Let θ^X : $W \to M$ be the maximal flow generated by *X*. Then Lie derivative of *Y* with respect to *X*, is the vector field $L_X Y \in \mathfrak{X}(M)$ defined by:

$$(L_X Y)_p = \lim_{t \to 0} \frac{1}{t} \left[(\theta_{-t}^X)_* (Y_{\theta^X(-t,p)}) - Y_p \right] = \lim_{t \to 0} \frac{1}{t} \left[Y_p - (\theta_t^X)_* (Y_{\theta^X(-t,p)}) \right],$$

at each $p \in M$.

- (viii) **Remark.** Let *M* be a smooth manifold and let $X, Y \in \mathfrak{X}(M)$.
 - (a) The tangent vector $(L_X Y)_p$ measures the rate of change of *Y* in direction of *X* along an integral curve of the vector field through *p*.
 - (b) If $Z_p(t) = (\theta_{-t}^X)_*(Y_{\theta^X(-t,p)}) \in T_p(M)$, viewed as a curve in \mathbb{R}^n , then $L(XY)_p = \dot{Z}_p(0)$.

(ix) **Lemma.** Let *M* be a smooth manifold and let $X \in \mathfrak{X}(M)$. Let $\theta^X : W \to M$ be the maximal flow generated by *X*. Given $p \in M$ and $f \in C^{\infty}(U)$, where $U \ni p$ is an open set, we choose a $\delta > 0$ and a neighborhood $V \ni p$ such that $\theta^X((-\delta, \delta) \times V)) \subset U$. Then there exists a C^{∞} function g(t, q) defined on $(-\delta, \delta) \times V$ such that for $q \in V$ and $t \in (-\delta, \delta)$, we have:

$$f(\theta_t(q)) = f(q) + tg(t,q) \text{ and } X_q(f) = g(0,q).$$

(x) **Theorem.** Let *M* be a smooth manifold and let $X, Y \in \mathfrak{X}(M)$. Then we have:

$$L_X Y = [X, Y].$$

(xi) **Theorem.** Let N, M be smooth be smooth manifolds, and let $F : N \to M$ be a smooth mapping. For i = 1, 2 let $X_i \in \mathfrak{X}(N)$ and $Y_i \in \mathfrak{X}(M)$ be vector fields such that $F_*(X_i) = Y_i$. Then:

$$F_*[X_1, X_2] = [F_*(X_1), F_*(X_2)].$$

(xii) Corollary.

- (a) The left-invariant vector fields on a Lie group *G* form a Lie algebra \mathfrak{g} with product $(X, Y) \mapsto [X, Y]$ and $\dim(\mathfrak{g}) = \dim(G)$.
- (b) If $F: G_1 \to G_2$ is a homomorphism of Lie groups, then $F_*: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a homomorphism of Lie algebras.
- (xiii) **Remark.** Let *G* be e Lie group, H < G is a Lie subgroup, and $i : H \rightarrow G$ the inclusion. Then $i_*(\mathfrak{h})$ is a subalgebra of \mathfrak{g} , which consists of the elements of \mathfrak{g} tangent to *H* and to its cosets *gH*.
- (xiv) **Theorem.** Let *M* be a smooth manifold and let $X, Y \in \mathfrak{X}(M)$. Then [X, Y] = 0 if and only if for each $p \in M$, there exists $\delta_p > 0$ such that

$$\theta_s^X \circ \theta_t^Y(p) = \theta_t^X \circ \theta_s^Y(p),$$

for all |t|, $|s| < \delta_p$.

2.8 Frobenius Theorem

- (i) **Definition.** Let *M* be a smooth manifold and let $\dim(M) = n + k$. For each $p \in M$, we assign an *n*-dimensional subspace $\Delta_p \subset T_p(M)$.
 - (a) Suppose in a neighborhood of each $p \in M$, there exists *n* linearly independent C^{∞} vector fields $X_1, \ldots, X_n \in \mathfrak{X}(M)$, which forms basis for all $q \in U$. Then we say that Δ is a C^{∞} -plane distribution of dimension *n* on *M* and X_1, \ldots, X_n is a *local basis* of Δ .
 - (b) We say distribution Δ is *involutive* if there exists a local basis X_1, \ldots, X_n in a neighborhood of each point such that:

$$[X_i, X_j] = \sum_{k=1}^n c_{ij}^k X_k$$
, for $1 \le i, j \le n$,

where the $c_{ij}^k \in C^{\infty}(M)$.

(ii) **Definition.** Let Δ be a C^{∞} distribution on a smooth manifold M, and let N be a connected smooth submanifold of M. If for each $q \in N$, we have $T_q(N) \subset \Delta_q$, then we say that N is an *intergral manifold* of Δ .

(iii) Example of a plane distributions.

- (a) If $M = \mathbb{R}^{n+k}$ and $\Delta = \langle X_i = \frac{\partial}{\partial x_i} : 1 \le i \le n \rangle$. Then the distribution is the subspace of dimension *n* consisting of all vectors parallel to \mathbb{R}^n at each $q \in M$.
- (b) Let *G* be e Lie group, *H* < *G* is a Lie subgroup, and *i* : *H* → *G* the inclusion. Then the subalgebra *i*_{*}(ħ) of 𝔅 defines a left-invariant distribution Δ on *G* such that Δ_h = Δ_h(*H*) for all *h* ∈ *H*.
- (iv) **Definition.** Let Δ be a C^{∞} distribution on a smooth manifold M and let $\dim(M) = n + k$. We say that Δ is *completely integrable* if each $p \in M$ has a cubical neighborhood (U, φ) such that $E_i = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i}\right)$ for $1 \le i \le n$, are a local basis on U for Δ .
- (v) **Remark.** Let Δ be a C^{∞} completely integrable distribution on a smooth manifold M as in Definition 2.4 (iv). Then there exists an integral manifold N through each $q \in U$ such that $T_q(N) = \Delta_q$, that is, dim(N) = n. In fact, $q = (a_1, ..., a_n)$, then an integral manifold through q is an n-slice given by

$$N = \varphi^{-1} \{ x \in \varphi(U) : x_j = a_j, n+1 \le j \le m \}.$$

Furthermore, this distribution is involutive since:

$$[E_i, E_j] = \varphi_*^{-1} \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right] = 0, 1 \le i \text{ and } j \le n.$$

A coordinate neighborhood (U, φ) as above is called a *flat* with respect to Δ .

- (vi) **Theorem (Frobenius).** A distribution Δ on a smooth manifold *M* is completely integrable if and only if its involutive.
- (vii) **Corollary.** Let (U, φ) be a flat coordinate neighborhood relative to an involutive *n*-plane distribution Δ on *M*. Then any connected integrable manifold $C \subset U$ must lie on a single *n*-slice

$$S_a = \{q \in U : x_i(q) = a_i, n+1 \le i \le m\}.$$

- (viii) **Theorem.** Let *M* be smooth manifold of dimension n + k and let $N \subset M$ be an integral manifold of an involutive distribution Δ with dim $(N) = \dim(\Delta)$. If $F(A) \subset N$ is a C^{∞} mapping of a manifold *A* into *M* such that $F(A) \subset N$, then *F* is a C^{∞} mapping into *N*.
- (ix) **Definition.** A *maximal integral manifold* N of an involutive distribution Δ on a smooth manifold M is a connected integral manifold which contains every connected integral manifold that it intersects.
- (x) Remark.
 - (a) If *N* is the maximal integral manifold of an involutive distribution Δ on a smooth manifold *M*, then dim(*N*) = dim(Δ).
 - (b) At most one maximal integral manifold that can pass through a point $p \in M$.
- (xi) **Theorem.** Let *G* be a Lie group, \mathfrak{g} its Lie algebra, and let \mathfrak{h} be a subalgebra of \mathfrak{g} . Then there exists a unique subgroup *H* < *G* whose Lie algebra is \mathfrak{h} .

2.9 Homogeneous spaces

(i) **Definition.** A smooth manifold *M* is said to be homogeneous space of the Lie group *G* if there exists a C^{∞} action of *G* on *M*.

- (ii) Examples of homogeneous spaces.
 - (a) Since the Lie group O(n) has a transitive action on S^{n-1} , S^{n-1} is a homogeneous space of O(n).
 - (b) Since the Lie group GL(n, ℝ) has a transitive action on ℝⁿ \ {0}, ℝⁿ \ {0} is a homogeneous space of GL(n, ℝ).
- (iii) **Theorem.** Let *G* be a Lie group and *H* a closed Lie subgroup. Then there exists a unique C^{∞} structure on *G*/*H* with the following properties.
 - (a) The canonical projection $\pi: G \to G/H$ is C^{∞} .
 - (b) Each $g \in G$ is in the image of a C^{∞} section (V, σ) on G/H.
 - (c) The natural action $\lambda : G \times G/H \to G/H$ is a C^{∞} action and dim $(G/H) = \dim(G) \dim(H)$.
- (iv) **Lemma.** If *H* is a connected Lie subgroup of a Lie group *G*, which is closed as a subset of *G*. then:
 - (a) Each coset gH is closed.
 - (b) There is a cubical neighborhood (*U*, φ) of any *g* ∈ *G* such that for each coset *xH* ∈ *G*/*H* either *xH* ∩ *U* = Ø or a *xH* ∩ *U* is a single connected slice.
- (v) **Theorem.** Let *G* be a Lie group with a transitive action θ : $G \times M \rightarrow M$ on a smooth manifold *M*.
 - (a) The mapping $\tilde{F} : G \to M$ defined by $\tilde{F}(g) = \theta(g, a)$ is C^{∞} and rank equal to dim(*M*) everywhere on *G*.
 - (b) For $a \in M$, the stabilizer subgroup $H = \text{Stab}_{\theta}(a) = \{g \in G : \theta_g(g) = a\}$ is a closed subgroup of *G*. Hence, *G*/*H* is a C^{∞} manifold.
 - (c) The mapping $F: G/H \to M$ defined by $F(gH) = \tilde{F}(g)$ is a diffeomorphism. Moreover, if $\lambda: G \times G/H \to G/H$ is the natural action of *G* on G/H, then $F \circ \lambda_g = \theta_g \circ F$, for all $g \in G$.
- (vi) Example of Lie groups realized as closed stablilizer subgroups.

(a) We know that that $\text{Isom}(\mathbb{R}^n) \cong O(n) \times \mathbb{R}^n$. Consider the Lie subgroup of *G* of $GL(n+1,\mathbb{R})$ defined by

$$G = \left\{ \begin{pmatrix} A & V^T \\ 0 \dots 0 & 1 \end{pmatrix} : A \in \mathcal{O}(n) \text{ and } V \in \mathbb{R}^n \right\}$$

and the set

$$X = \begin{pmatrix} X^T \\ 1 \end{pmatrix} \colon X \in \mathbb{R}^n \}.$$

Then *G* acts transitively on *X* and $\text{Stab}_{\theta}(0) = O_n$. Hence, O(n) is a closed subgroup of *G*.

(b) Consider the transitive action of the Lie group $G = SL(n, \mathbb{R})$ on $\mathbb{R}P^n$ via the action $(g, [x]) \xrightarrow{\theta} [gx]$. Then:

 $\operatorname{Stab}_{\theta}([(1, 0, \dots, 0)]) = \{A = (a_{ij} \in \operatorname{SL}(n, \mathbb{R}) : a_{11} \neq 0 \text{ and } a_{i1} = 0, \text{ for } i > 1\}.$

- (c) Consider the transitive action $\theta : G \times M \to M$ of the Lie group $G = GL(n, \mathbb{R})$ on the Grassmanian M = G(k, n), the set of *k*-frames through the origin. For a *k*-plane $P \in M$, let $H = \operatorname{Stab}_{\theta}(P)$. Then $G/H \cong G(k, n)$ and hence G(k, n) is a manifold.
- (vii) **Remark.** If a Lie group acts transitively on set *X* in such a way that the stabilizer subgroup of a point $a \in X$ is a closed Lie subgroup, then there exists a unique C^{∞} structure on *X* such that the action is C^{∞} .

References

- [1] William M. Boothby. *An introduction to differentiable manifolds and Riemannian geometry*, volume 120 of *Pure and Applied Mathematics*. Academic Press, Inc., Orlando, FL, second edition, 1986.
- [2] John M. Lee. *Introduction to smooth manifolds*, volume 218 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2003.