MTH 508/608: Introduction to Differentiable Manifolds and Lie Groups Semester 1, 2024-25

October 28, 2024

This Lesson Plan is based on the topics covered in [\[1,](#page-40-0) [2\]](#page-40-1).

Contents

1 Differentiable manifolds

1.1 Review of multivariable differential calculus

1.1.1 Real-valued differentiable functions

(i) **Definition.** Let $f: U \subset \mathbb{R}^n$ $\to \mathbb{R}$, where *U* is an open set. Then for $1 \leq k \leq$ *n*, the *k*th partial derivative $\frac{\partial f}{\partial x_k}$ at $a = (a_1, ..., a_n) \in U$ is defined by:

$$
\left(\frac{\partial f}{\partial x_k}\right)_a = \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.
$$

- (ii) **Definition.** A function $f: U \subset \mathbb{R}^n$ $\rightarrow \mathbb{R}$ is said to be *continuously differentiable* on *U* (in symbols $f \in C^1(U)$) if for $1 \leq k \leq n$, $\left(\frac{\partial f}{\partial x}\right)^{k}$ *∂x^k*) is well-defined and continuous on *U*.
- (iii) A function $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$ is said to be *differentiable* at $a \in U$ if there exists constants b_1, \ldots, b_n and a function $r(x, a)$ defined on a neighborhood $V \ni$ *a* in *U* satisfying the following conditions.

(a)
$$
f(x) = f(a) + \sum_{i=1}^{n} b_i(x_i - a_i) + ||x - a|| r(x, a).
$$

(b)
$$
\lim_{x \to a} r(x, a) = 0.
$$

- (iv) **Theorem.** Let $f: U \subset \mathbb{R}^n$ $\to \mathbb{R}$, where *U* is an open set. If *f* is differentiable at *a* $\in U$, then *f* is continuous at *a*, and $\left(\frac{\partial f}{\partial x}\right)$ *∂x^k* ´ $a \text{ exists for } 1 \leq k \leq n \text{ and }$ $b_k = \left(\frac{\partial f}{\partial x}\right)$ *∂x^k* ´ *a* Conversely, if $\left(\frac{\partial f}{\partial x}\right)$ *∂x^k* for $1 \leq k \leq n$ exist for each *y* in some neighborhood $V \ni a$ and are continuous on V , then f is differentiable at *a*.
- (v) **Definition.** Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}$, where *U* is an open set. Then:
	- (a) *f* is said to be *r*-fold continuously differentiable (in symbols $f \in C^r(U)$) if all of its r^{th} order partial derivtaives exists at each $a \in U$ and are continuous on *U*.
	- (b) *f* is said to be *smooth* (in symbols) *f* ∈ $C^{\infty}(U)$) if *f* ∈ $C^{r}(U)$ for each $r \geq 1$.
- (vi) **Definition.** A differentiable C^{*r*} curve in \mathbb{R}^n is a continuous map f : $(a, b) \rightarrow$ \mathbb{R}^n such that each component function $f_i : (a, b) \to \mathbb{R}$ for $1 \le i \le n$ satisfies $f_i \in C^r(a, b)$.
- (vii) **Proposition (Chain rule).** Let $f : (a, b) \to U(\subset \mathbb{R}^n)$ be a diffrentiable curve, and let $g: U \to \mathbb{R}$ be differentiable at $f(t_0)$ for some $to \in (a, b)$. Then $g \circ f$ is diffetentiable at t_0 and we have:

$$
\frac{d}{dt}(g\circ f)_{t_0} = \sum_{i=1}^n \left(\frac{\partial g}{\partial x_i}\right)_{f(x_0)} \left(\frac{dx_i}{dt}\right)_{t_0}.
$$

- (viii) **Definition.** We say a domain $U \in \mathbb{R}^n$ is *star-shaped with respect to a* $\in U$, if for each $x \in U$, the line segment $\overline{ax} \subset U$.
- (ix) **Theorem (Mean Value Theorem).** Let $f: U \subset \mathbb{R}^n$ $\rightarrow \mathbb{R}$ be differentiable and let *U* be star-shaped with respect to $a \in U$. Then given $x \in U$, there exists $\theta \in (0,1)$ such that:

$$
f(x) - f(a) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)_{a+\theta(x-1)} (x_i - a_i).
$$

(x) **Corollary.** Let $f: U \subset \mathbb{R}^n$ $\rightarrow \mathbb{R}$ be differentiable and let *U* be star-shaped with respect to $a \in U$. If for $1 \le k \le n$, *∂f ∂xⁱ* $\vert < k$ on *U*, then for any $x \in U$, we have: p

$$
|f(x) - f(a)| < k\sqrt{n}|x - a|.
$$

(xi) **Corollary.** If $f \in C^{r}(U)$, then at each $a \in U$, the value of any k^{th} order mixed partial derivative is independent of the order of differentiation.

1.1.2 Differentiable functions $\mathbb{R}^n \to \mathbb{R}^m$

- (i) **Definition.** Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$, where *U* is open. Then:
	- (a) *f* is said to be *differentiable of class r* (in symbols $f \in C^{r}(U)$), if $f_i \in$ $C^r(U)$, for $1 \le i \le m$.
	- (b) *f* is said to be *smooth* (in symbols $f \in C^{\infty}(U)$) is $f_i \in C^{\infty}(U)$, for $1 \le$ $i \leq m$.

(ii) If $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$ is differentiable on *U*, then its *Jacobian matrix* defined by

$$
Df := \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}
$$

exists at each *a* ∈ *A*.

(iii) **Proposition.** A mapping $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$ is differentiable at $a \in U$ (resp. on*U*) if and only if there exists an *m*×*n* matrix *A* of constants (resp. functions on *U*) and an *m*-tuple $R(x, a) = (r_1(x, a), \ldots, r_n(x, a))$ of functions on *U* (resp. *U* × *U*) such that $||R(x, a)||$ → 0 as $x \rightarrow a$ and for each $a \in U$, we have:

$$
F(x) = F(a) + A(x - a) + |x - a| R(x, a).
$$

If such $R(x, a)$ and *A* exists, then *A* is unique and $A = Df$.

(iv) **Theorem.** Let $f: U \subset \mathbb{R}^n$, where *U* is open, and let *U* be star-like with respect to $a \in U$. If f is differentiable on U with $\Big|$ *∂fⁱ ∂x^j* $\leq k$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, for every $a \in U$. Then:

$$
|F(x) - F(a)| \le \sqrt{n m} k |x - a|.
$$

(v) **Theorem(Chain Rule).** Let $f: U(\subset \mathbb{R}^n) \to V(\subset \mathbb{R}^m)$ and let $g: V \to \mathbb{R}^p$. If *f* is differentiable at $a \in U$ and g is differentiable at $b = f(a)$, then $h = g \circ f$ is differentiable at $x = a$ and

$$
Dh(a) = Dg(F(a))Df(a).
$$

- (vi) **Corollary.** Let $f: U(\subset \mathbb{R}^n) \to V(\subset \mathbb{R}^m)$ and let $g: V \to \mathbb{R}^p$. If $f \in C^r(U)$ and $g \in C^r(V)$, then $g \circ f \in C^r(U)$.
- (vii) Let $\mathcal{C} = \{x : (-\epsilon, \epsilon) \to \mathbb{R}^n : x \in C^1(-\epsilon, \epsilon), x(0) = a, \text{ and } \epsilon \in (0, \infty)\}\)$. Define an equivalence relation ~ on *C* by $x(t)$ ~ $y(t)$ is $x'(0) = y'(0)$, for $1 \le i \le n$. Then there exists a well-defined correspondence

$$
\mathscr{C} \wr \sim \hookrightarrow V^n : [x(t)] \hookrightarrow (x'_1(0), \dots, x'_n(0)), \tag{*}
$$

where V^n is vector space of dimension n over $\mathbb R$.

- (viii) **Definition.** The correspondence in (*) above induces a vector space structure on \mathscr{C} / ~ called the *tangent space of* \mathbb{R}^n at *a* denoted by $T_a(\mathbb{R}^n)$.
	- (ix) **Definition.** A map $f: U(\subset \mathbb{R}^n) \to V(\subset \mathbb{R}^m)$ is called a C^r -diffeomorphism if:
		- (a) *f* is a homeomorphism and
		- (b) both *f* and f^{-1} are of class C^r .
	- (x) Let $U, V, W \subset \mathbb{R}^n$ be open. Let $f: U \to V$ and $g: V \to W$ be onto mappings, and let $h = g \circ f$. If any two of these are diffeomorphisms, then so is the third.
	- (xi) **Theorem (Inverse Function Theorem).** Let $f: W(\subset \mathbb{R}^n) \to \mathbb{R}^n$ be a C^r mapping for some $r \geq 1$. If for $a \in W$, $Df(a)$ is non-singular, then there exists a neighborhood $U \ni a$ in W such that $V = f(U)$ is open and $f: U \rightarrow$ *V* is a *C*^{r}-diffeomorphism. In particular, if $y = f(x)$, then

$$
Df^{-1}(y) = (Df(x))^{-1}.
$$

- (xii) **Corollary.** Let $f: W \subset \mathbb{R}^n$ $\rightarrow \mathbb{R}^n$, where *W* is open. If $Df(a)$ is nonsingular at each $a \in W$, then f is an open map.
- (xiii) **Corollary.** A C^{∞} map $f: W(\subset \mathbb{R}^n) \to \mathbb{R}^n$ is a diffeomorphism $W \to f(W)$ if and only if Df is non-singular at each $a \in W$.
- (xiv) Let $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^m$. Then the rank of $Df(x)$ is defined to be *rank of f at x.*
- (xv) **Theorem (Rank Theorem).** Let $f: U_0(\subset \mathbb{R}^n) \to V_0(\subset \mathbb{R}^m)$ be a C^r -mapping and let rank of *f* be *k* at each $x \in U_0$. If $a \in U_0$ and $b = f(a)$, then there exists open sets $U \subset U_0$ and $V \subset V_0$ with $a \in U$ and $b \in V$, and there exists C^r -diffeomorphisms $g: U \to U'(\subset \mathbb{R}^m)$, $h: V \to V'(\subset \mathbb{R}^m)$ such that $h \circ f \circ$ $g^{-1}(U') \subset V'$ and

$$
h \circ f \circ g^{-1}(x_1,...,x_n) = (x_1,...,x_k,0,...,0).
$$

1.2 Smooth manifolds

1.2.1 Topological manifolds

- (i) **Definition.** A topological space *M* is said to be *locally Euclidean of dimension n* if for each $p \in M$, there exists a neighborhood $U_p \ni p$ and a homeomorphism φ_p from U to an open set in \mathbb{R}^n , for some fixed $n.$ Each pair (*Up*,*ϕp*) is called a *coordinate neighborhood (or chart* of *M*.
- (ii) **Definition.** An *topological n-manifold* (or a *topological manifold of dimension n*) is a topological space *M* with the following properties.
	- (a) *M* is Hausdorff.
	- (b) *M* is locally Euclidean of dimension *n*.
	- (c) *M* is second countable.
- (iii) Examples of topological *n*-manifolds.
	- (a) An open subset of \mathbb{R}^n is an *n*-manifold.
	- (b) The unit sphere S^2 is a 2-manifold.
	- (c) The torus $T^2 \approx S^1 \times S^1$ is a 2-manifold.
	- (d) The *real projective n-space* $\mathbb{R}P^n = \mathbb{R}^{n+1} \{0\}$ / ~, where $x \sim y$, of $y =$ *tx*, or equivalently, the space of all lines through the origin in \mathbb{R}^{n+1} is an *n*-manifold.
	- (e) If *M* is a smoothly embedded 2-manifold in \mathbb{R}^3 , then the *tangent bundle of M* defined by $T(M) := \bigcup$ *p*∈*M* $T_p(M)$ is a 4-manifold.
- (iv) **Theorem.** A topological *n*-manifold *M* has the following properties.
	- (a) *M* is locally connected.
	- (b) *M* is locally compact.
	- (c) *M* is a countable union of compact sets (i.e. *σ*-compact).
	- (d) *M* is normal and metrizable.
- (v) **Definition.** A *topological n-manifold with boundary* is a Hausdorff, secondcountable space, where each $p \in M$ has a neighborhood $U \ni p$ such that *U* is homeomorphic via (a homeomorphism) φ to either:
- (a) an open set of $\mathbb{H}^n \partial \mathbb{H}^n$, where $\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \geq 0\}$, or
- (b) an open set in \mathbb{H}^n with $\varphi(p) \in \partial \mathbb{H}^n$.
- (vi) Examples of manifolds with boundary.
	- (a) The annulus $S^1 \times I$ is a 2-manifold with two boundary components.
	- (b) The torus minus a disk is a 2-manifold with one boundary components.
	- (c) The sphere minus 3 (mutually disjoint) open disks (also known as a *pair of pants*) is a 2-manifold with three boundary components.

(vii) **Theorem (Classification of 2-manifolds or surfaces).**

- (a) Every compact, connected, closed (without boundary), and orientable (resp. non-orientable) 2-manifold is homeomorphic to a sphere with $g \ge 0$ handles (resp. $g \ge 1$ crosscaps) attached.
- (b) Every compact and connected 2-manifold with boundary is homeomorphic to a compact, connected, and closed 2-manifold with $b \ge 1$ mutually disjoint imbedded open disks removed.

1.2.2 Smooth manifolds

- (i) **Definition.** Two coordinate neighborhoods (U_p, φ_p) and (U_q, φ_q) of a topological *n*-manifold *M* are said to be *C* [∞]*-compatible* (or *smoothly compatible*) if $U_p \cap U_q \neq \emptyset$ implies that both $\varphi_p \circ \varphi_q^{-1}$ and $\varphi_q \circ \varphi_p^{-1}$ are diffeomorphisms.
- (ii) **Definition.** A *differentible* (or *C* [∞] or *smooth*) structure on a topological manifold *M* is a family $\mathcal{U} = (U_{\alpha}, \varphi_{\alpha})$ of coordinate neighborhoods of *M* that satisfies the following conditions.
	- (a) The U_α cover M .
	- (b) For any *α*,*β*, the coordinate neighborhoods (*Uα*,*ϕα*) and (*Uβ*,*ϕβ*) are smoothly compatible.
	- (c) If (V, ψ) is a coordinate neighborhood that is smoothly compatible with every coordinate neighborhood in \mathcal{U} , then $(V, \psi) \in \mathcal{U}$.

If $\mathcal{U} = (U_{\alpha}, \varphi_{\alpha})$ satisfies just (a) & (b), it is called an *atlas for M*, and if an atlas for *M* also satisfies (c) it is called a *maximal atlas for M*. Thus, a smooth structure on *M* is also known as a maximal atlas for *M*.

- (iii) **Definition.** A *differentible* (or C^{∞} or *smooth*) *n*-manifold is a topological *n*-manifold *M* together with a smooth structure on *M*.
- (iv) **Theorem.** Let *M* be a Hausdorff and second-countable space. Let ${U_a, \varphi_a}$ be a covering of *M* by smoothly compatible coordinate neighborhoods. Then there exists a unique smooth structure on *M* containing these neighborhoods (called the *smooth structure determined by the* ${U_\alpha, \varphi_\alpha}$).
- (v) Examples of differentiable manifolds.
	- (a) \mathbb{R}^n with the standard topology is a differentiable manifold with a single coordinate neighborhood (R *n* ,*i d*) determining a structure by Theorem 1.2.2 (iv).
	- (b) An *n*-dimensional vector space over R is a differentiable *n*-manifold. Consequently, the vector space $M_n(\mathbb{R})$ of $n \times n$ matrices over the reals is a differentiable *n* 2 -manifold.
	- (c) An open subset of a differentiable *n*-manifold is also differentiable *n*-manifold.
	- (d) The general linear group $GL(n, \mathbb{R})$ is a differentible n^2 -manifold since $GL(n,\mathbb{R}) = det^{-1}(\mathbb{R}\setminus\{0\})$ under the determinant map det : $M_n(\mathbb{R}) \to \mathbb{R}$.
	- (e) The unit sphere $S^2 \subset \mathbb{R}^3$ is a differentiable 2-manifold with the differentiable structure determined by $\{U_i^{\pm}\}$ $\frac{1}{i}$, φ_i^{\pm} i^{\pm}): $1 \le i \le 3$, where

$$
U_i^{\pm} = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \pm x_i > 0 \} \text{ and } \varphi_i^{\pm}(x_1, x_2, x_3) = \pi_i(x_1, x_2, x_3),
$$

where π_i denotes the projection onto the coordinate plane with the unit vector e_i as the unit normal.

(f) The real projective *n*-space $\mathbb{R}P^n$ is a differentiable *n*-manifold with the structure determined by the coordinate neighborhoods $\{(U_i,\varphi_i):$ $1 \leq i \leq n+1$, where

$$
U_i = \{q(\bar{U_i}) : \bar{U_i} = \{x \in \mathbb{R}^{n+1} : x_i \neq 0\}\}
$$
 and
$$
q : \mathbb{R}^{n+1} \to \mathbb{R}P^n
$$
 is the quotient map

and $\varphi_i: U_i \to \mathbb{R}^n$ is defined by

$$
\varphi_i(x_1,... x_{n+1}) = \left(\frac{x_1}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_{n+1}}{x_i}\right).
$$

(g) The *Grassman manifold G*(*k*,*n*) is defined to be the set of *k*-planes through the origin in \mathbb{R}^n . Let $F(k, n)$ denotes the set of *k*-frames (i.e. linearly independent sets of k elements) in \mathbb{R}^n . Define an equivalence relation \sim on $F(k, n)$ by:

$$
X \sim Y \iff \exists A \in GL(n, \mathbb{R})
$$
 such that $Y = AX$.

Then *G*(*k*, *n*) ≈ *F*(*k*, *n*)/ ∼. Hence, *G*(*k*, *n*) is Hausdorff and the quotient map π : $F(k, n) \rightarrow G(k, n)$ is open. Given an ordered subset $J = (j_1, \ldots, j_k)$ of $(1, 2, \ldots, n)$ and an $A \in M_{kn}(\mathbb{R})$, let $A_J = (a_{ij_\ell})_{1 \le i, \ell \le k}$ be a $k \times k$ submatrix of *A* and *A*['] *J* be the complementary $k \times (n - k)$ matrix obtained by striking out the columns j_1, \ldots, j_k of A. Let $U_{\bar{j}}$ be the open set of $F(k, n)$ consisting of matrices for which A_J is non- \sup singular and let $U_j = \pi(U_j)$. Then $G(k, n)$ is a differentiable manifold with a differentiable structure determined by the coordinate neighborhoods {(U_J, φ_J)}, where $\varphi_J: U_J \to M_{k(n-k)} (\approx \mathbb{R}^{k(n-k)})$ defined by $\varphi(B) = B'$ *J* .

(vi) **Theorem.** If *M* is a differentiable *m*-manifold and *N* is a differentiable *n*manifold, the $M \times N$ is a differentiable $(m + n)$ -manifold.

1.2.3 Differentiable functions on smooth manifolds

- (i) **Definition.** Let *M* be a smooth manifold. A map $f: W(\subset M) \to \mathbb{R}$, where *W* is open, is said to be C^{∞} (or *smooth*) if each $p \in W$ lies in a coordinate neighborhood (U, φ) such that $f \circ \varphi^{-1}$ is C^∞ on $\varphi(W \cap V)$.
- (ii) **Remark.** A C^{∞} map as in the Definition above is continuous.
- (iii) Examples of C^{∞} maps.
	- (a) The coordinate projections of a coordinate neighborhood (U, φ) defined by $x_i(q) = \pi_i(\varphi(q))$, for each $q \in U$ are C^{∞} .
	- (b) If $F \in C^{\infty}(W)$ and $V \subset W$ is open, then $F|_W \in C^{\infty}(W)$.
	- (c) If $W = \bigcup_{\alpha} V_{\alpha}$, where V_{α} is open and $F \in C^{\infty}(V_{\alpha})$ for each α , then $f \in$ $C^{\infty}(W)$.
	- (d) If $f \in C^\infty(W)$ and (V, ψ) is a coordinate neighborhood such that $V \cap$ $W \neq \emptyset$, then $f \circ \psi^{-1} \in C^\infty(\psi(V \cap W))$.
- (iv) **Definition.** Let *M* and *N* be smooth manifold, and let $F: W \subset M$) $\rightarrow N$, where *W* is open. Then *f* is said to be a *C* [∞] (or *smooth*) *mapping* if for each $p \in W$, there exists coordinate neighborhoods (U, φ) of p and (V, ψ) of $f(p)$ with $f(U) \subset V$ such that $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \varphi(V)$ is C^{∞} .
- (v) **Remark.** *C* [∞] mappings satisfy the following properties.
	- (a) They are continuous.
	- (b) The constructions in Examples (b)-(d) also hold true in the setting of *C* [∞] mappings.
- (vi) **Definition.** Let *M* and *N* be smooth manifolds. A C^{∞} mapping $f : M \to N$ is said to be a *diffeomorphism* if f is a homeomorphism and \tilde{f}^{-1} is C^∞ .
- (vii) **Remark.**
	- (a) The relation of diffeomorphism between smooth manifolds is an equivalence relation.
	- (b) Smooth manifolds with the same underlying topological manifolds but incompatible *C* [∞] structures can be diffeomorphic. For example, consider the smooth structure (\mathbb{R}, f) on \mathbb{R} , where $f(t) = t^3$. Note that *f* ∈ *C*[∞](ℝ) and is a homeomorphism, but not a diffeomorphism since $f^{-1}(t) = \frac{3}{t} f \notin C^1(\mathbb{R})$. Eurthermore, the smooth structures (ℝ *i d*) and $f^{-1}(t) = \sqrt[3]{t} \notin C^1(\mathbb{R})$. Furthermore, the smooth structures (\mathbb{R} *, i d*) and $\bar{R}(R,f)$ on \R are not C^∞ compatible. However, \R with these two structures are diffeomorphic.
	- (c) It is a non-trivial fact that a topological manifold *M* can have nondiffeomorphic*C* [∞] structures. Milnor gave examples of non-diffeomorphic C^{∞} structures on S^7 .
- (viii) **Definition.** Let $F: N \to M$ be a differentiable mapping of smooth manifolds and let $p \in N$. Let (U, φ) and (V, ψ) be coordinate neighborhoods of *p* and $f(p)$ such that $f(U) \subset V$. Then the *rank of f at p* is defined as the rank of $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$.
	- (ix) **Remark.** The rank of *f* at *p* is the rank of the Jacobian matrix of $\psi \circ f \circ \varphi^{-1}$ at $\varphi(p)$.
	- (x) **Theorem (Rank Theorem).** Let $F: N \to M$ be a differentiable mapping of smooth manifolds and let $p \in N$. Let dim(*M*) = *m*, dim(*N*) = *n*, and

rank $(f) = k$ at each point of N. Then there exists coordinate neighborhoods (U, φ) and (V, ψ) of *p* and $f(p)$ with $f(U) \subset V$ such that:

- (a) $\varphi(p) = 0 \in \mathbb{R}^n$, $\varphi(U) = C_{\epsilon}^n(0)$,
- (b) $\psi(f(p)) = 0 \in \mathbb{R}^m$, $\varphi(V) = C_{\epsilon}^m(0)$, and
- (c) $(\psi \circ f \circ \varphi^{-1})(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0).$
- (xi) **Corollary.** If $f : N \to M$ is a diffeomorphism, then $\dim(M) = \dim(N) =$ rank (f) .
- (xii) **Definition.** A C^{∞} mapping $f : N \to M$ between smooth manifolds is said to be an *immersion* (resp. *submersion*) if rank(f) = dim(N) (resp. rank(f) = dim(*M*)).
- (xiii) **Remark.**
	- (a) Since rank(f) \leq max($\dim(M)$, $\dim(N)$) at every point, it follows that if *f* is an immersion (resp. submersion), then $\dim(M) \leq \dim(N)$ (resp. $\dim(M) \geq \dim(N)$).
	- (b) If $f : N \to M$ is an injective immersion, then using the correspondence $N \leftrightarrow f(N)$, $f(N)$ can be endowed with a topology and a C^{∞} structure from *N* under which $f: N \to f(N)$ is a diffeomorphism.
- (xiv) **Definition.** Let $f: N \to M$ is an injective immersion. Then $f(N)$ is called an *immersed submanifold* of *M*.
- (xv) **Remark.**
	- (a) Immersions need not be injective.
	- (b) Even when injective, an immersion need not define a homeomorphism onto its image.
- (xvi) **Definition.** An injective immersion $f: N \to M$ that defines a homeomorphism $\tilde{f}: N \to f(N)$ onto its image is called an *imbedding*.
- (xvii) Example of immersions.
	- (a) The map $f : \mathbb{R} \to \mathbb{R}^3$ be defined by $f(t) = (\cos(2\pi t), \sin(2\pi t), t)$ is an imbedding whose image is an infinite helix on the unit infinite cylinder with the *z*-axis as axis.
- (b) The map $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$ a (noninjective) immersion whose image is the unit circle centered at the origin.
- (c) The map $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (2\cos(t \pi/2), \sin(2t \pi))$ a (non-injective) immersion whose image is a figure-eight curve (also known as a *lemniscate*).
- (d) The map $f \circ g$, where $g(t) = \pi + 2 \tan^{-1}(t)$ and f as in example (c) above, is an injective immersion that is not an imbedding.
- (xviii) **Theorem.** Let $f: N \to M$ be an immersion. Then at each $p \in N$ there exists a neighborhhod $U \ni p$ such that $f|_U$ is an imbedding of U in M .

1.2.4 Submanifolds

- (i) **Definition.** A subset *N* of a smooth *m*-manifold *M* is said to have the *nsubmanifold property* if each $p \in N$ has a coordinate neighborhood (U, φ) on *M* such that: .
	- (a) $\varphi(p) = 0 \in \mathbb{R}^n$,
	- (b) $\varphi(U) = C_{\epsilon}^{m}(0)$, and
	- (c) $\varphi(U \cap N) = \{x \in C_{\epsilon}^{m}(0) : x_{n+1} = \dots = x_{m} = 0\}.$

If an $N \subset M$ satisfies this property, then any coordinate neighborhood satisfying (a) - (c) above is called a *preferred coordinate neighborhood.*

- (ii) **Lemma.** Let *M* be a smooth *m*-manifold, and let $N \subset M$ have the smooth *n*-submanifold property. Then:
	- (a) *N* with the subspace topology is a topological *n*-manifold.
	- (b) Each coordinate neighborhood (*U*,*ϕ*) on *M* defines a coordinate neighborhood ($U \cap N$, $\pi \circ \varphi|_V$) on *M* and these coordinate neighborhoods define an induced *C* [∞] structure on *N*.
	- (c) Relative to the induced structure above, the inclusion $N \hookrightarrow M$ is an imbedding.
- (iii) **Definition.**A *regular submanifold N* of a smooth *m*-manifold *M* is a subspace of *M* with the *n*-submanifold property and with C^∞ structure that the corresponding preferred coordinate neighborhoods determine on it.
- (iv) **Theorem.** Let N' and M be smooth smooth manifolds of dimensions n and *n* respectively, and let $f : N' \to M$ be an imbedding. Then:
	- (a) $N = f(N')$ has the *n*-submanifold property and is hence a regular submanifold of *M*, and
	- (b) *f* defines a diffeomorphism $\tilde{f}: N' \to N$ onto its image.
- (v) **Theorem.** Let N' and M be smooth manifolds of dimensions n and m respectively, and $f: N' \to M$ is an injective immersion. If N is compact, then $N = f(N')$ is a regular *n*-submanifold. Consequently, a compact submanifold of *M* is regular.
- (vi) **Theorem (Regular Value Theorem).** Let *N* and *M* be smooth manifolds of dimensions *n* and *m* respectively, and $f : N \to M$ be a C^∞ mapping. If *f* has constant rank *k* on *N*, then for any $q \in f(N)$, $f^{-1}(q)$ is a closed regular submanifold of *N* of dimension $n - k$.
- (vii) **Corollary.** Let *N* and *M* be smooth manifolds of dimensions *n* and *m* respectively, and $f : N \to M$ be a C^{∞} mapping. If $m \leq n$ and rank(f) = m at each point of $A = f^{-1}(a)$, then *A* is a closed regular submanifold of *M* of dimension *n* −*m*.
- (viii) Example of regular submanifolds.
	- (a) The smooth map $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x_1,...,x_n) = \sum_{i=1}^n x_i^2$ $i²$. has constant rank 1 on $\mathbb{R}^n \setminus \{0\}$. Thus, by the Regular Value Theorem, the unit sphere $S^{n-1} = f^{-1}(0)$ is a submanifold of $\mathbb{R}^n \setminus \{0\}$, and hence \mathbb{R}^n of dimension *n* −1.
	- (b) The smooth map $f : \mathbb{R}^3 \to \mathbb{R}$ defined by

$$
f(x_1, x_2, x_3) = \left(a - \sqrt{x_1^2 + x_2^2}\right)^2 + x_3^2,
$$

where $a > b > 0$, has constant rank 1 at each point of the torus $f^{-1}(b^2)$. Thus, by the Corollary to the Regular Value Theorem, it follows that the torus is a submanifold of \mathbb{R}^3 of dimension 2.

1.3 Lie groups and their actions on manifolds

1.3.1 Lie groups

- (i) **Definition.** Let *G* be a group and a smooth manifold. Then *G* is *Lie group* if the group operation $G \times G \rightarrow G : (g, h) \rightarrow gh$ and the inverse mapping $G \rightarrow G : g \rightarrow g^{-1}$ are C^{∞} mappings.
- (ii) Examples of Lie groups.
	- (a) The general linear group $GL(n, \mathbb{R})$ is a Lie groups with respect to matrix multiplication.
	- (b) $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is a Lie group with respect to complex multiplication. Note that C^* is a smooth manifold with a differentiable structure comprising single coordinate neighborhood (U, φ) , where $U = C^*$ and φ : $C^* \to \mathbb{R}^2$ defined by $\varphi(x + iy) = (x, y)$.
- (iii) **Lemma.** Let $f : A \to M$ be a C^{∞} mapping of C^{∞} manifolds. If $f(A) \subset N$, where *N* is a regular submanifold, then *f* is a C^{∞} mapping onto *N*.
- (iv) **Theorem.** Let *G* be a Lie group and *H* < *G* be a regular submanifold. Then with its differentiable structure as a submanifold, *H* is a Lie group.
- (v) **Theorem.** If G_1 and G_2 are Lie groups, then $G_1 \times G_2$ is a Lie group with the *C* [∞] structure coming from the Cartesian product of the manifolds.
- (vi) More examples of Lie groups
	- (a) By Theorem 2.1(iv) above, $S^1 \subset C^*$ is a Lie group. Consequently, by Theorem 2.1 (v), the *n* torus $T^n = \prod_{i=1}^n S^1$ is a Lie group.
	- (b) The *special linear group* $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : det(A) = 1\}$ is a Lie group of dimension $n^2 - 1$. This follows from the Regular Value Theorem and Theorem 2.1(iv) since the C^{∞} mapping det : GL(n, \mathbb{R}) $\rightarrow \mathbb{R}^*$ has constant rank 1 and SL(n, \mathbb{R}) = det⁻¹(1).
	- (c) The *orthogonal group* $O(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : AA^T = I_n\}$ is a Lie group of dimension $n(n-1)/2$. This follows from the Regular Value Theorem and Theorem 2.1(iv) since the C^{∞} mapping $f : GL(n, \mathbb{R}) \rightarrow$ GL(*n*, \mathbb{R}) defined by $f(A) = AA^T$ has constant rank $n(n+1)/2$ and $O(n, \mathbb{R}) = f^{-1}(I_n).$
- (vii) **Definition.** Let G_1 and G_2 be Lie groups. We call an $f: G_1 \rightarrow G_2$ a *Lie group homomorphism* if:
	- (a) *f* is a homomorphism and
	- (b) f is a C^{∞} mapping.
- (viii) Example of Lie group homomorphisms.
	- (a) The map det: $GL(n, \mathbb{R}) \to \mathbb{R}^*$ is a Lie group homomorphism.
	- (b) The (covering) map $p : \mathbb{R} \to S^1$ defined by $p(x) = e^{2\pi i x}$ is a Lie group homomorphism. By extension, $p^n : \mathbb{R}^n \to T^n$ is a Lie group homomorphism.
	- (c) Consider the covering map $p^2 : \mathbb{R}^2 \to T^2$ from the preceding example and a line $L_{\alpha}\subset \mathbb{R}^2$ through the origin of irrational slope α given by $L_{\alpha} = \{(x, \alpha x) : x \in \mathbb{R}\}$. Then $p^2(L_{\alpha})$ is a dense subset of T^2 . Moreover, $p^2|_{L_\alpha}: L_\alpha \to T^2$ is an injective immersion. Thus, $f(L_\alpha)$ is an immersed submanifold of *T* 2 .

Moreover, if $g : \mathbb{R} \to \mathbb{R}^2$ is defined by $g(t) = (t, \alpha t)$, then $p^2 \circ g : \mathbb{R} \to T^2$ is a Lie group homomorphism and $(p^2 \circ g)(\mathbb{R}) = p^2(L_\alpha)$ is Lie group. However, $p^2(L_\alpha)$ is neither closed or a regular submanifold of $T^2.$

- (ix) **Theorem.** If $f: G_1 \rightarrow G_2$ is a Lie group homomorphism, then:
	- (a) rank (f) is constant and
	- (b) ker *f* is a closed regular submanifold of G_1 .
- (x) **Theorem.** If *H* is a regular submanifold and a subgroup of a Lie group *G*, then *H* is a closed subset of *G*.

1.3.2 Lie group actions

- (i) **Definition.** Let *G* be a Lie group, and *X* be a smooth manifold. Then *G acts smoothly on X* (in symbols $G \cap X$) is there exists a C^{∞} mapping θ : $G \times X \rightarrow X$ satisfying the following conditions.
	- (a) If $e \in G$ is the identity, then $\theta(e, g) = g$, for all $g \in G$.
	- (b) If $g_1, g_2 \in G$, then $\theta(g_1, \theta(g_2, x)) = \theta(g_1 g_2, x)$, for all $x \in X$.
- (ii) **Notation**
- (a) We often write θ (*g*, *x*) in the definition above simply as $g \cdot x$ or *gx*.
- (b) For a fixed $g \in G$, we denote by θ_g , the mapping $x \mapsto gx$, for all $x \in G$.
- (iii) **Remark.** $G \cap X$ if and only if the map $G \rightarrow$ Diffeo(*X*) defined by $g \rightarrow \theta_g$ is a homomorphism.
- (iv) **Definition.** Let *G* be a Lie group, and *X* be a smooth manifold. Then a smooth action of *G* on *X* is *effective (or faithful)* if the homomorphism $g \rightarrow \theta_g$ is injective.
- (v) Example of Lie group actions.
	- (a) Let *H* and *G* be Lie groups, and $\psi : H \to G$ a Lie group homomorphism. Then θ : $H \times G \rightarrow G$ defined by $\theta(h, x) = \psi(h)(x)$ is a smooth action.
	- (b) The natural action of $GL(n, \mathbb{R})$ on \mathbb{R}^n is a smooth action which has a unique fixed point $\{0\}$. Note that this is a transitive action on $\mathbb{R}^n \setminus \{0\}$.
	- (c) If $H < GL(n, \mathbb{R})$ and the inclusion $H \hookrightarrow GL(n, \mathbb{R})$ is an immersion or an imbedding, then restricted action of H on \mathbb{R}^n is smooth. For example, the restricted action of the subgroup

$$
H = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \in \text{GL}(2, \mathbb{R}) : a > 0 \right\},
$$

which is a two-dimensional regular submanifold of GL(2,R), on \mathbb{R}^2 , is smooth.

- (d) The Lie group $G = \text{Isom}(\mathbb{R}^n) \cong O(n, \mathbb{R}) \times \mathbb{R}^n$ of rigid motions in \mathbb{R}^n acts smoothly on \mathbb{R}^n and this action is given by θ : $G \times \mathbb{R}^n \to \mathbb{R}^n$, where $\theta((A, b), x) = Ax + b.$
- (e) The group GL(n , \mathbb{R}) acts transitively on the set \mathscr{B} of bases of \mathbb{R}^n (also known as the space of *n*-frames of \mathbb{R}^n). Given a basis $f = \{f_1, \ldots, f_n\}$ of \mathbb{R}^n , there exists a unique matrix in $GL(n,\mathbb{R})$ that maps the standard basis $e = \{e_1, \ldots, e_n\}$ to f. Thus, there is a correspondence $\mathcal{B} \leftrightarrow$ $GL(n,\mathbb{R})$, which is a diffeomorphism. Hence, \mathcal{B} is a smooth manifold and the action of $GL(n,\mathbb{R})$ on \mathscr{B} is smooth.
- (f) The Lie group $O(n, \mathbb{R})$ acts on \mathbb{R}^n smoothly and the orbits of this action are concentric spheres centered at the origin. Thus, $\mathbb{R}^n/\mathrm{O}(n) \approx$ [0,∞) which is not a smooth manifold.
- (vi) **Theorem.** Let *G* be a Lie group and *H* < *G* in an algebraic subgroup. Then the map $G \rightarrow G/H$ is continuous and open. Furthermore, G/H is Hausdorff if and only if *H* is closed.
- (vii) **Definition.** The action of a Lie group *G* on a manifold *X* is said to be free if $g \cdot x = x$ for any $g \in G$ and $x \in X$, then it would imply that $g = e$.

1.3.3 Discrete groups and properly discontinuous actions

- (i) **Definition.** A *discrete group* Γ is a countable group with the discrete topology.
- (ii) **Remark.** A discrete group is a zero-dimensional Lie group.
- (iii) **Definition.** A discrete group Γ is said to act *properly discontinuously* on a manifold \tilde{M} if the action is C^{∞} satisfying the following conditions.
	- (a) Each $x \in \tilde{M}$ has a neighborhood $U \ni x$ such that $\{h \in \Gamma : h(U) \cap U \neq \emptyset\}$ is finite.
	- (b) If $x, y \in \tilde{M}$ are not in the same orbit, then there exists neighborhoods *U* $\ni x$ and *V* $\ni y$ such that $U \cap \Gamma(V) = \emptyset$.
- (iv) **Remark.** If a discrete group Γ acts properly discontinuously on a manifold \tilde{M} , then \tilde{M}/Γ is Hausdorff.
- (v) **Definition.** Let \tilde{M} and M be smooth manifolds, and let $\pi : \tilde{M} \to M$ be a smooth and surjective map. The π is said to be a *covering map* if at each *p* ∈ *M* there exists a connected neighborhood $U \ni p$ such that:
	- (a) $\pi^{-1}(U) = \Box_{\alpha} V_{\alpha}$, where V_{α} is open, and
	- (b) for each α , $\pi|_{V_\alpha}: V_\alpha \to U$ is a diffeomorphism.

A neighborhood *U* satisfying properties (a) and (b) is a called an *evenly covered neighborhood.* If there exists a covering map $\pi : \tilde{M} \to M$, then the manifold *M*˜ is said to be a *covering manifold* of *M*.

(vi) **Theorem.** Let Γ be discrete group that acts freely and properly discontinuously on a manifold \tilde{M} , there exists a unique \tilde{C}^{∞} structure on $M = \tilde{M}/\Gamma$ such that \tilde{M} is a covering manifold of M.

- (vii) **Remark.** The rank of a covering map $\pi : \tilde{M} \to M$ equals dim(M) = dim(\tilde{M}) since it is a local diffeomorphism.
- (viii) **Lemma** Let *G* be a Lie group and Γ an algebraic subgroup of *G*. Then there exists a neighborhood $U \ni e$ such that $\Gamma \cap U = \{e\}$ if and only if Γ is a discrete subspace, in which case $\overline{\Gamma} = \Gamma$.
- (ix) **Theorem**. Any discrete subgroup Γ of a Lie group *G* acts freely and properly discontinuously on *G* by left multiplication.
- (x) **Corollary.** If Γ is a discrete subgroup of a Lie group *G*, then *G*/Γ is a *C* ∞ manifold and π : $G \rightarrow G/\Gamma$ is smooth.
- (xi) **Theorem.** Let $\pi : \tilde{M} \to M$ be the covering of a smooth manifold M by a connected smooth manifold \tilde{M} . Then the *group of deck transformations*

$$
\mathrm{Deck}(\pi) := \{ f \in \mathrm{Diffeo}(\tilde{M}) : f \circ \pi = \pi \}
$$

acts freely and properly discontinuously on \tilde{M} and the quotient map π_1 : $\tilde{M} \rightarrow \tilde{M}/\text{Deck}(p)$ is a covering map. If $\text{Deck}(\pi)$ acts transitively on the fibers of π , then π_1 and $\tilde{M}/\text{Deck}(\pi)$ can be naturally identified with π and *M*, respectively.

- (xii) Examples of discrete group actions.
	- (a) The action $\mathbb{Z}_2 \times S^n \to S^n$ defined by ([1], x) $\mapsto -x$ is a free and properly discontinuous action and under this action, $S^n/\mathbb{Z}_2 \approx \mathbb{R}P^n$. Thus, by Theorem 1.3.3 (xi), it follows that the quotient map $S^n \to \mathbb{R}P^n$ is a covering map and S^n is a covering manifold of $\mathbb{R}P^n$.
	- (b) The action $\mathbb{Z}^n \times \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$
((k_1,...,k_n),(x_1,...,x_n)) \mapsto (x_1+k_1,...,x_n+k_n)
$$

is a free and properly discontinuous action and under this action, $\mathbb{R}^n/\mathbb{Z}^n \approx T^n = \prod_{i=1}^n S^1$. Thus, by Theorem 1.3.3 (xi), it follows that the quotient map $\mathbb{R}^n \to T^n$ is a covering map and \mathbb{R}^n is a covering manifold of *T n* .

2 Vector fields on manifolds

2.1 Tangent space at a point on a manifold

(i) **Definition.** Let *M* be a smooth manifold. Given any $p \in M$ consider the collection

> $C_p = \{f : U \subset M \} \rightarrow \mathbb{R} : f \in C^\infty(U)$, *U* is open, and *U* contains a neighborhood of p}.

Define an equivalence relation on C_p given by $f \sim g$ if f and g agree on some neighborhood of *p*. Then $\mathcal{C}^{\infty}(p) := C_p / \sim$ is called *algebra of germs of C*[∞] *functions at p*.

- (ii) **Remark.** Given a coordinate neighborhood (U, φ) of $p \in M$, the induced algebra homomorphism φ^* : $\mathscr{C}^\infty(\varphi(p)) \to \mathscr{C}^\infty(p)$ defined by $\varphi^*(f) = f \circ \varphi$ is an isomorphism of algebras of germs of *C* [∞] functions.
- (iii) **Definition.** The *tangent space* $T_p(M)$ *to M at p* is the set of all mappings $\{\mathscr{C}^{\infty}(p) \to \mathbb{R}\}\$ satisfying the following conditions for all $\alpha, \beta \in R$, $f, g \in \mathbb{R}$ $\mathscr{C}^{\infty}(p)$, and $X_p, Y_p \in T_p(M)$.
	- (a) $X_p(\alpha f + \beta g) = \alpha X_p(f) + \beta X_p(g)$. (Linearity)
	- (b) $X_p(fg) = X_p(f)g(p) + f(p)X_p(g)$. (Leibnitz rule)
	- (c) The vector space operations:
		- (1) $(X_p + Y_p)(f) = X_p(f) + Y_p(f)$.
		- (2) $(\alpha X_p)(f) = \alpha X_p(f)$.

A *tangent vector to M at* $p \in M$ is any $X_p \in T_p(M)$.

- (iv) **Theorem.** Let $F : M \to N$ be a C^{∞} map of smooth manifolds, and let $p \in$ *M*. Then:
	- (a) The map F^* : $\mathcal{C}^{\infty}(f(p)) \to \mathcal{C}^{\infty}(p)$ defined by $F^*(f) = f \circ F$ is an algebra homomorphism.
	- (b) The homomorphism F^* the induces a dual homomorphism $F_*: T_p(M) \to$ *T*_{*F*(*p*)}(*N*) defined by *F*_{*}(*X_p*)(*f*) = *X_p*(*F*^{*}(*f*)).
- (v) **Corollary.**
- (a) If $F: M \to M$ is the identity map on a smooth manifold M, then both *F* ∗ and *F*∗ are identity isomorphisms.
- (b) If $H = G \circ F$ is a composition of C^{∞} maps on smooth manifolds, then $H^* = F^* \circ G^*$ and $H_* = G_* \circ F_*$.
- (vi) **Corollary.** If $F : M \to N$ is a diffeomorphism of smooth manifold M onto an open set of a smooth manifold *N*, then each $p \in M$, the homomorphism $F_*: T_p(M) \to T_{F(p)}(N)$ is an isomorphism.
- (vii) **Remark.** Let *M* be a smooth *n*-manifold and let (U, ϕ) be a coordinate neighborhood of $p \in M$. Then by Corollary 2.1 (vi), ϕ induces an isomorphism $\varphi_* : T_p(M) \to T_{\varphi(p)}(\mathbb{R}^n)$ at each $p \in U$. Consequently, $\varphi_* :$ $T_{\varphi(p)}(\mathbb{R}^n) \to T_p(M)$ is an isomorphism and for $1 \le i \le n$, the images $E_{ip} =$ $\varphi_*^{-1}\left(\frac{\partial}{\partial x}\right)$ *∂xⁱ* \int of the natural basis at $\varphi(p) \in \varphi(U)$ determines a basis of $T_p(M)$.
- (viii) **Corollary.** Let *M* be a smooth *n*-manifold.
	- (a) To each coordinate neighborhood $(U\varphi)$ of a smooth *n*-manifold *M*, there corresponds a natural basis E_{1p}, \ldots, E_{np} of $T_p(M)$, for all $p \in U$. Consequently,

$$
\dim(T_p(M)) = n = \dim(M).
$$

(b) Let *f* be a C^{∞} function defined on a neighborhood of *p* and let \hat{f} = $f \circ \varphi^{-1}$ be its expression in local coordinates relative to (U,φ) . Then:

$$
E_{ip}(f) = \left(\frac{\partial \hat{f}}{\partial x_i}\right)_{\varphi(p)}
$$

.

.

(c) In particular, if $x_i(q)$ is the ith coordinate function, then:

$$
X_p = \sum_{i=1}^n (X_p(x_i)) E_{ip}.
$$

(ix) **Remark.** Let *M* be a smooth *n*-manifold and let (U, ϕ) be a coordinate neighborhood of $p \in M$. Since $E_{ip} = \varphi_*^{-1}\left(\frac{\partial}{\partial x}\right)$ *∂xⁱ*), we have:

$$
E_{ip}(f) = \varphi_*^{-1}\left(\frac{\partial}{\partial x_i}\right)(f) = \frac{\partial}{\partial x_i}(f \circ \varphi^{-1})\Big|_{x = \varphi(p)}.
$$

In particular , if $f(q) = x_i(q)$ and $X_p = \sum^n$ *j*=1 $\alpha_j E_{jp}$, then we have

$$
X_p(x_i) = \sum_{j=1}^n \alpha_j(E_{jp}(x_i)) = \sum_{j=1}^n \alpha_j \left(\frac{\partial x_i}{\partial x_j}\right)_{\varphi(p)} = \alpha_i.
$$

- (x) **Theorem.** Let *M* and *N* be smooth manifolds of dimensions *m* and *n*, respectively, and let $F : M \to N$ be a smooth map. Let (U, φ) and (V, ψ) be coordinate neighborhoods such that $F(U) \subset V$, and in these coordinates let *F* be given by $y_i = f(x_1, \ldots, x_n)$, $1 \le i \le m$. Let *p* be a point with coordinates $a = (a_1, \ldots, a_n)$, $E_{ip} = \varphi_*^{-1}\left(\frac{\partial}{\partial x}\right)$ *∂xⁱ*), $1 \leq i \leq m$ be a basis of $T_p(M)$, and $\tilde{E}_{jF(p)} = \varphi_*^{-1}\left(\frac{\partial}{\partial v}\right)$ *∂y ^j* $\bigg), 1 \leq j \leq n$, be a basis of $T_{F(p)}(N)$. Then:
	- (a) For $1 \le i \le n$, we have:

$$
F_*(E_{ip}) = \sum_{j=1}^m \left(\frac{\partial y_j}{\partial x_i}\right)_a \tilde{E}_{jF(p)}.
$$

(b) In terms of components, if $X_p = \sum^n$ *i*=1 $\alpha_i E_{ip}$ and $F_*(X_p) = \sum^m$ *j*=1 $\tilde{E}_{jF(p)},$ then for $1 \le j \le m$, we have:

$$
\beta_j = \sum_{i=1}^n \alpha_i \left(\frac{\partial y_j}{\partial x_i} \right)_a.
$$

- (xi) **Remark.** Let *M* be a smooth submanifold of *N*, and let $F : M \to N$ be an immersion or an inclusion of *M* into *N*. Then we have rank(F) = dim(M), and hence, $F_*: T_p(M) \to T_p(N)$ is injective (i.e., an isomorphism onto its image). Consequently, $T_p(M)$ can be identified with a subspace of $T_p(N)$.
- (xii) Applications of Theorem 2.1 (x).
	- (a) *Change of basis formula for* $T_p(M)$ *. We apply Theorem 2.1 (x) to the* maps $F = \tilde{\varphi} \circ \varphi^{-1}$ and F^{-1} , which give the change of coordinates between the coordinate neighborhoods (U,φ) and $(\tilde{U},\tilde{\varphi})$ in $U\cap \tilde{U}$ on *M*. For $p \in U \cap \tilde{U}$, let $E_{ip} = \varphi_*^{-1} \left(\frac{\partial}{\partial x_i} \right)$ *∂xⁱ* and $\tilde{E}_{ip} = \tilde{\varphi}_*^{-1} \left(\frac{\partial}{\partial \tilde{x}} \right)$ *∂x*˜*ⁱ* ´ be the bases

of $T_p(M)$ corresponding to (U, φ) and $(\tilde{U}, \tilde{\varphi})$, respectively. Then we have:

$$
E_{ip} = \sum_{k} \left(\frac{\partial \tilde{x}_k}{\partial x_i} \right)_{\varphi(p)} \tilde{E}_{kp}, 1 \le i \le n, \text{ and}
$$

$$
\tilde{E}_{jp} = \sum_{\ell} \left(\frac{\partial x_{\ell}}{\partial \tilde{x}_j} \right)_{\tilde{\varphi}(p)} \tilde{E}_{\ell p}, 1 \le \ell \le n.
$$

In particular, if:

$$
X_p = \sum_{i=1}^n \alpha_i E_{ip} = \sum_{j=1}^n \beta_j \tilde{E}_{jp},
$$

then:

$$
\alpha_i = \sum_{j=1}^n \beta_j \frac{\partial x_i}{\partial \tilde{x}_j} \text{ and } \beta_j = \sum_{i=1}^n \alpha_i \frac{\partial \tilde{x}_j}{\partial x_i}.
$$

(b) *Tangent to a space curve.* Let $F : (a, b) \rightarrow N$ be a C^{∞} curve. Then for $t_0 \in (a, b)$, we have $\left(\frac{d}{dt}\right)_{t_0}$ is a basis for $T_{t_0}(M)$. If $p = F(t_0)$ and $f \in \mathscr{C}^{\infty}(p)$, then

$$
F_*\left(\frac{d}{dt}\right)(f) = \left(\frac{d}{dt}(f \circ F)\right)_{t_0},
$$

which is called the to the curve $F(t)$ at p . In particular, if (U, φ) are the coordinates around p , then in local coordinates F is given by:

$$
\hat{F}(t)=(\varphi\circ F)(t)=(x_1(t),\ldots,x_n(t),
$$

where each x_i is a function on U . To simplify notation, we write $x_i(t) = (x_i \circ F)(f)$, and we have:

$$
F_*\left(\frac{d}{dt}\right)(x_i) = \left(\frac{dx_i}{dt}\right)_{t_0} := \dot{x}_i(t_0).
$$

Applying Theorem 2.1 (x) (with $E_{1p} = \frac{d}{dt}$ and the *E*s replaces with \tilde{E} s), we have:

$$
F_*\left(\frac{d}{dt}\right) = \sum_{i=1}^n \dot{x}_i(t) E_{ip}.
$$

When $N = \mathbb{R}^n$, $\frac{d}{dt}$ is the velocity vector at the point $p = (x_1(t_0),...,x_n(t_0))$ whose components (at *p*) are $(\dot{x}_1(t_0),...,\dot{x}_n(t_0))$. This is the vector $v_p \in T_p(\mathbb{R}^n)$ with initial point $p = x(t_0)$ and terminal point

$$
(x_1 + \dot{x}_1(t_0), \dots, x_n + \dot{x}_n(t_0)).
$$

If $\text{rank}_{t_0}(F) = 1$, then F_* is an isomorphism onto its image, and we identify the tangent space to the image curve at *p* with the subspace of $T_p(\mathbb{R}^n)$ spanned by v_p . On the other hand, if rank $t_0(F) = 0$, then $F_*\left(\frac{d}{dt}\right) = 0.$

2.2 Vector fields

- (i) **Definition.** A *vector field X of class* C^r on a smooth manifold *M* is a mapping *X* : *M* → *T*(*M*) = ∪_{*p*∈*M*} *T*_{*p*}(*M*) that assigns to each *p* ∈ *M* a vector *X_p* ∈ *T_p*(*M*) whose components in the local frames {*E*_{1*p*},...,*E*_{*np*}} of any coordinate neighborhood (U, φ) of p are of class C^r on U .
- (ii) Examples of vector fields.
	- (a) The unit gravitational vector field *G* on $M = \mathbb{R}^3 \{0\}$ of an object of unit mass at 0 is a smooth mapping $G: M \rightarrow T(M)$ defined by

$$
G(p) = \sum_{i=1}^{3} -\frac{x_i}{r^3} \frac{\partial}{\partial x_i}\Bigg|_p,
$$

where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$ z.
3

- (b) Given any coordinate neighborhood (U, φ) on a smooth manifold M , for each $1 \le i \le n$, $E_i = \varphi_*^{-1}\left(\frac{\partial}{\partial x_i}\right)$ *∂xⁱ* $\big)$ having component δ_{ij} is a C^∞ vector field on *U*. The set $\{E_1, \ldots, E_n\}$ form a basis for $T_p(M)$ at each $p \in U$ called the coordinate frame associated to (U, φ) .
- (c) It is known there non-vanishing C^{∞} vector fields on even-dimensional spheres, while odd-dimensional spheres have at least one non-vanishing vector field. For example on

$$
S^3 = \{ (x_1, x_2, x_3, x_4) : \sum_{i=1}^4 x_i^2 = 1 \},\
$$

there are three mutually perpendicular unit vector fields given by:

$$
X = -x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2} + x_4 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_4}
$$

\n
$$
Y = -x_3 \frac{\partial}{\partial x_1} - x_4 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + x_2 \frac{\partial}{\partial x_4}
$$

\n
$$
Z = -x_4 \frac{\partial}{\partial x_1} + x_3 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4}
$$

- (iii) **Definition.** A smooth manifold *M* with a C^∞ -vector field of bases is said to be *parallelizable*.
- (iv) **Lemma**. Let *N* be a submanifold of *M*, and let *X* be a C^{∞} -vector field on *M* such that for each $p \in N$, $X_p \in T_p(N)$. Then $X|_N$ is a C^∞ -vector field.
- (v) **Remark.** Let *N*, *M* be smooth manifolds, and let $F: N \to M$ be a smooth map. Then given a vector field *X* on *N*, $F_*(X_p)$ is a vector at $T_{F(p)}(M)$. However, this process does not in general induce a vector field on *M*. This is because:
	- (a) *F* need not be surjective and
	- (b) even when *F* is surjective, there might exist $p_1, p_2 \in N$ with $F(p_i) = q$ $\text{such that } F_*(X_{p_1}) \neq F_*(X_{p_2}).$
- (vi) **Definition.** Let *N*, *M* be smooth manifolds, and let $F: N \to M$ be a smooth map. Suppose there exists a vector field *Y* on *M* such that for each $q \in M$ and $p \in F^{-1}(q) \in N$, we have $F_*(X_p) = X_q$. Then we say that the vector fields *X* and *Y* are *F*-related and we write $Y = F_*(X)$
- (vii) **Theorem.** If $F: N \to M$ is a diffeomorphism, then each vector field *X* on *N* is *F*-related to a uniquely determined vector field *Y* on *M*.
- (viii) **Definition.** Let *M* be a smooth manifold and $F : M \to M$ be a diffeomorphism. Then *X* is said to be *F* -*invariant* if $F_*(X) = X$.
- (ix) **Definition.** Let *G* be a Lie group and for a fixed $g \in G$, let $L_g : G \to G$ be left multiplication by *g*, that is, $L_g(h) = gh$, for all $h \in G$. Then a vector field *X* on *G* is a said to *left-invariant (or invariant under left translations)* if (L_g) ∗ $(X) = X$ for all $g \in G$.
- (x) **Theorem.** Let *G* be a Lie group and $e \in G$ be the identity element. Then each $X_e \in T_e(G)$ determines a unique C^∞ -vector field *X* on *G* that is leftinvariant. In particular, *G* is parallelizable.
- (xi) **Corollary.** Let G_1 and G_2 be Lie groups and $F: G_1 \rightarrow G_2$ be a homomorphism. Then to each left-invariant vector field X on G_1 , there exists a uniquely determined left-invariant vector field *Y* on G_2 such that $F_*(X) = Y$.

2.3 Flows on manifolds

(i) **Definition.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^∞ -action on a smooth manifold *M*. Then θ defines a C^∞ -vector field X^θ on M given by $X^{\theta}(p) = X^{\theta}_p$, where $X_p \theta : \mathscr{C}^{\infty}(p) \to \mathbb{R}$ is defined by

$$
X_p^{\theta}(f) = \lim_{\Delta t \to 0} [f(\theta_{\Delta t}(p)) - f(p)].
$$

The vector field X^θ is called the *infinitesimal generator of* θ *.*

- (ii) **Definition.** Let θ : $G \rightarrow$ Diffeo(*M*) defined by $\theta(g) = \theta_g$ be a C^{∞} -action on a smooth manifold *M*. Then a vector field *X* on *M* is said to *G-invariant* if $(\theta_g)_*(X) = X$ for all $g \in G$.
- (iii) **Theorem.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^∞ -action on a smooth manifold *M*. Then X^{θ} is invariant under θ , that is, $(\theta_t)_*(X^{\theta}) = X^{\theta}$, for all $t \in \mathbb{R}$.
- (iv) **Corollary.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^∞ -action on a smooth manifold *M*. If $X_p = 0$, then for each *q* in the orbit of *p*, we have $X_q = 0$.
- (v) **Theorem.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^{∞} -action on a smooth manifold *M*. The orbit of *p* given is either a single point or an immersion of R in *M* by the map $t \mapsto \theta_t(p)$ depending on whether or not $X_p = 0$.
- (vi) **Remark.** Let $\theta : \mathbb{R} \to \text{Diffeo}(M)$ defined by $\theta(t) = \theta_t$ be a C^{∞} -action on a smooth manifold *M*. For $t_0 \in \mathbb{R}$, let $\frac{d}{dt}$ be standard basis of $T_{t_0}(\mathbb{R})$, and let $F(t) = \theta_t(p)$. Since we have

$$
F_*\left(\frac{d}{dt}\right) = X_{\theta_{t_0}}(p) = X_{F(t_0)},
$$

it follows that at each $p \in M$, X_p is tangent to orbit of p and is the velocity vector to $t \rightarrow F(t)$ in *M*.

- (vii) **Definition.** Given a vector field *X* on a smooth manifold *M*, we say that a curve *F* : $(a, b) \rightarrow M$ is an *integral curve* of *X* if $\frac{dF}{dt} = X_{F(t)}$ for all $t \in (a, b)$.
- (viii) **Remark.** Let θ : $\mathbb{R} \times M \to M$ be a C^{∞} -action on a smooth manifold M. Then each orbit of θ is an integral curve of X^{θ} , that is, $\dot{\theta}(t, p) = X_{\theta(t, p)}$.
- (ix) Examples of R-actions.
	- (a) Let $M = \mathbb{R}^2$, and $\theta : \mathbb{R} \times M \to M$ be defined by $\theta(t, (x, y)) = (x + t, y)$. Then $X^{\theta} = \frac{\partial}{\partial x^{\theta}}$ *∂x* .
	- (b) If $M' = \mathbb{R}^2 \setminus \{(0,0)\}\)$, then the θ from (a) does not restrict to an action on M'. However, if we consider the open set $W \subset \mathbb{R} \times M'$ given by

$$
W = \left(\bigcup_{y \neq 0} \mathbb{R} \times \{(x, y)\}\right) \cup \{(t, (x, 0)) : x(x + t) > 0\},\
$$

then $\theta' = \theta|_W$ preserves most of the properties of θ .

(x) **Definition** Let *M* be a smooth manifold and $W \subset \mathbb{R} \times M$ be an open set such that for each $p \in M$, there exists real numbers $\alpha(p) < 0 < \beta(p)$ such that

$$
W \cap (\mathbb{R} \times \{p\}) = (\alpha(p), \beta(p)) \times \{p\},\
$$

so that

$$
W=\bigcup_{p\in M}(\alpha(p),\beta(p))\times\{p\}.
$$

Then a *local one-parameter action (or a flow)* on M is a C^∞ map $\theta : W \to M$ such that:

- (a) $\theta_0(p) = p$ for all $p \in M$.
- (b) If $(s, p) \in W$, we have:
	- (1) $\alpha(\theta_s(p)) = \alpha(p) s$,
	- (2) $\beta(\theta_s(p)) = \beta(p) s$, and
	- (3) for any $t \in (\alpha(p) s, \beta(p) s)$, we have $\theta_{t+s}(p) = \theta_t \circ \theta_s(p)$.
- (xi) **Remark.** Let θ : $W \to M$ be a flow on a smooth manifold M.
	- (a) Since *W* is open and $(0, p) \in W$, there exists a neighborhood $U \ni p$ such that $(-\delta, \delta) \times U \subset W$ for sufficiently small δ . Thus, θ also has a well-defined infinitesimal generator X^θ associated to it.
	- (b) θ satisfies $\theta_t^{-1} = \theta_{-t}$, wherever it is well-defined. In general, θ_t need not define a map on all of *M*.
	- (c) Let $V_t \subset M$ be the domain of definition of θ_t , that is, $V_t = \{p \in M:$ $(t, p) \in W$ }. For all $p \in V_t$, we have $(\theta_t)_*(X_p^{\theta}) = X_{\theta_t(p)}$.
- (d) The curve defined $F(t) = \theta_t(p)$, for $t \in (\alpha(p), \beta(p))$ is a C^{∞} curve, which is an immersion of $(\alpha(p), \beta(p))$ if $X_p \neq 0$, and is a single point, if $X_p = 0$.
- (xii) **Theorem.** Let $\theta : W \to M$ be a flow on a smooth manifold M and let $V_t \subset M$ be the domain of definition of θ_t , that is, $V_t = \{p \in M : (t, p) \in W\}$. Then:
	- (a) *V^t* is an open set for all *t* and
	- (b) $\theta_t: V_t \to V_{-t}$ is a diffeomorphism with $\theta_t^{-1} = \theta_{-t}$.
- (xiii) **Theorem.** Let $\theta : W \to M$ be a flow on a smooth manifold M and let X^{θ} be its associated infinitesimal generator. If $p \in M$ is such that $X^\theta_p \neq 0$, then there exists a coordinate neighborhood (V, ψ) around p, a $\nu >$, and a corresponding neighborhood V' ∋ p with $V' \subset V$ such that in local coordinates $\theta|_{(-v,v)\times V'}$ is given by $(t, y_1,..., y_n) \rightarrow (y_1 + t, y_2,..., y_n)$. Moreover, in these coordinates, we have $X = \psi_*^{-1}\left(\frac{\partial}{\partial x}\right)$ *∂x*¹ \int for every point of V' .

2.4 Existence of integral curves

- (i) **Theorem.** Suppose that for $1 \le i \le n$, $f_i(t, x_1, \ldots, x_n)$ are C^r functions on $(-\epsilon, \epsilon) \times U$, where $r \ge 1$ and $U \subset \mathbb{R}^n$ is open. Then for each $x \in U$, there exists δ > 0 and a neighborhood *V* \exists *x* with *V* \subset *U* such that:
	- (a) For each $a = (a_1, \ldots, a_n) \in V$, there exists an *n*-tuple of C^{r+1} functions $x(t) = (x_1(t),...,x_n(t))$ with $x_i: (-\delta, \delta) \rightarrow U$ satisfying the first-order system of ODEs:

$$
\frac{dx_i}{dt} = f_i(t, x), 1 \le i \le n
$$
\n^(*)

with initial conditions

$$
x_i(0) = a_i, \ 1 \le i \le n. \tag{**}
$$

- (b) For each $a = (a_1, \ldots, a_n) \in V$, the $x_i(t)$ are uniquely determined in the sense that any other function $\bar{x}_i(t)$ satisfying (*) and (**) must agree with $x(t)$ on an open interval around $t = 0$.
- (c) As the functions $x_i(t)$ are uniquely determined by $a = (a_1, \ldots, a_n) \in$ *V*, we can write them as $x_i(t, a_1, \ldots, a_n)$ for $1 \le i \le n$, in which case they are of class C^r in all the variable and determine a C^r map $(-\delta, \delta) \times$ $V \rightarrow U$.
- (ii) **Definition.** If the right hand side of equation (∗) in Theorem 2.4(i) above is independent of *t*, then we say that the system of ODEs is *autonomous.*
- (iii) **Remark.** Consider an autonomous system of ODEs as in Theorem 2.4(i), where the f_i depend only on (x_1, \ldots, x_n) .
	- (a) Define on $U \subset \mathbb{R}^n$ a C^∞ vector field *X* by $X = \sum_{i=1}^n f_i(x) \frac{\partial}{\partial x_i}$ *∂xⁱ* . An integral curve of *X* is a smooth mapping $F : (\alpha, \beta) \to U$ such that $\dot{F}(t) =$ *X*_{*F*(*t*)} for all *x* ∈ (*α*, *β*). Since *F*(*t*) = (*x*₁(*t*),...,*x_n*(*t*)), we have:

$$
\dot{F}(t) = X_{F(t)} \iff \frac{dx_i}{dt} = f_i(x_1(t), \dots, x_n(t)), \, 1 \le i \le n,
$$

that is, $x(t) = (x_1(t),...,x_n(t))$ are a solution of equation (*).

- (b) By Theorem 2.4(i), for each *a* in a neighborhood $V \ni x$, there exists a unique $F(t)$ satisfying $F(0) = a$ and $F: (-\delta, \delta) \rightarrow U$ for every $a \in V$.
- (c) If $F(t, a) = (x_1(t, a), \dots, x_n(t, a))$, then $\dot{x}_i(t, a) = f_i(x(t, a))$ and $x_i(0, a) =$ *a*_{*i*}, where each is *x*_{*i*} is C^{∞} on ((−*δ*,*δ*) × *V*), an open subset of $\mathbb{R} \times U$.
- (iv) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then:
	- (a) For each $p \in M$, there exists a neighborhood *V* and a real number δ > 0 such that there exists a C^{∞} mapping:

$$
\theta^V: (-\delta, \delta) \times V \to M
$$

satisfying

$$
\dot{\theta}^V(t,q) = X_{\theta^V(t,q)}
$$

and $\theta^V(0, q) = q$ for all $q \in V$.

- (b) If $F(t)$ is an integral curve of *X* with $F(0) = q \in V$, then $F(t) = \theta^V(t, q)$, for all $|t| < \delta$. In particular, this mapping is unique in the sense that if (V_1, δ_1) is another such pair for $p \in M$, then $\theta^V = \theta^{V_1}$ on the common part of their domains.
- (v) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then for each $p \in M$, there exists a uniquely determined open interval $(\alpha(p), \beta(p))$ having the following properties:
	- (a) There exists a C^{∞} integral curve $F(t)$ defined on $(\alpha(p), \beta(p))$ such that $F(0) = p$.
- (b) If *G* is another integral curve with $G(0) = p$, then the interval of definition of *G* is contained in $(α(p), β(p))$ and $F(t) \equiv G(t)$ on this interval.
- (vi) **Remark.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. By Theorem 2.4 (v), two curves of *X* defined on open intervals I_1 and I_2 that coincide on *I*₁ ∩ *I*₂ $\neq \emptyset$, define an integral curve on *I*₁ ∪ *I*₂. So, let *F*(*t*) = $\theta^X(t,p)$ be the unique maximal integral curve such that $F(0) = p$ and let $W = \bigcup_{p \in M} (\alpha(p), \beta(p)) \times \{p\}.$ Then:
	- (a) *W* and θ^X are uniquely determined by *X*, and *W* is the domain of θ^X .
	- (b) *W* and θ^X satisfy the following properties.
		- (1) We have $\{0\} \times M \subset W$ and $\theta^X(0, p) = p$ for all $p \in M$.
		- (2) For each $p \in M$, if $\theta_p^X(t) = \theta^X(t, p)$, then θ_p^X : $(\alpha(p), \beta(p)) \to M$ is *C* [∞] maximal integral curve.
		- (3) For each $p \in M$, there exists a neighborhood $V \ni p$ and a $\delta > 0$ such that $(-\delta, \delta) \times V \subset W$ and θ^X is C^∞ on $(-\delta, \delta) \times V$.
- (vii) **Corollary.** In the notation of Remark 2.4 (vi) above, let $s \in (\alpha(p), \beta(p))$ and $q = \theta_p^X(s) = \theta^X(s, p)$ be the corresponding point of the integral curve determined by *p*. Then:
	- (a) $\alpha(q) = \alpha(p) s$ and $\beta(q) = \beta(p) s$. Thus, $t \in (\alpha(q), \beta(q))$ if and only if $t + s \in (\alpha(p), \beta(p))$ and
	- (b) $\theta^X(t, \theta^X(s, p)) = \theta^X(t + s, p).$
- (viii) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M*. Then:
	- (a) The domain *W* of θ^X is open in $\mathbb{R} \times M$ and
	- (b) θ^X is C^{∞} onto *M*.
	- (ix) **Definition.** Let *M* be a smooth manifold, and for $i = 1, 2$, let $\theta_i : W_i \to M$ be one-parameter group actions (or flows) on *M*. Then we say $\theta_1 \cong \theta_2$ if $\theta_2(x) = \theta_2(x)$ for all $x \in W_1 \cap W_2$.
	- (x) **Theorem.** Let *M* be a smooth manifold.
		- (a) For $i = 1, 2$, let $\theta_i : W_i \to M$ be one-parameter group actions (or flows) on *M*. Then: $\theta_1 \cong \theta_2$ if and only if $X^{\theta_1} = X^{\theta_2}$.
- (b) Furthermore, every C^{∞} vector field *X* is the infinitesimal generator of a unique flow $\theta^X:W\to M$ (called the *maximal flow generated by X*) whose domain *W* is maximal among all $\tilde{\theta} \cong \theta$.
- (xi) **Lemma.** Let θ^X : $W \to M$ be the flow with maximal domain *W* and infinitesimal generator *X* acting on a smooth manifold *M*. For $p \in M$, let *θ*_{*p*}</sub> : (*α*(*p*),*β*(*p*)) → *M* defined by $θ_p^X(t) = θ^X(t,p)$ be the integral curve of *X* through *p*. If $\beta(p) < \infty$ and $\{t_n\} \subset (\alpha(p), \beta(p))$ is a sequence such that $t_n \to \beta(p)$, then $\{\theta^X(t_n, p)\}$ cannot lie on a compact set. In particular, $\{\theta^X(t_n, p)\}$ cannot approach a limit in *M*. A similar statement holds for $\alpha(p)$ with $\alpha(p) < \infty$.
- (xii) **Corollary.** Let θ^X : $W \to M$ be the flow with maximal domain *W* and infinitesimal generator *X* acting on a smooth manifold *M*. For $p \in M$, let *θ*_{*p*}</sub> : (*α*(*p*), *β*(*p*)) → *M* defined by $θ_p^X(t) = θ^X(t, p)$ be the integral curve of *X* through *p*.
	- (a) If $(\alpha(p), \beta(p))$ is a bounded interval, then the integral curve $\{\theta_p^X(t)$: $t \in (\alpha(p), \beta(p))$ is a closed subset of *M*.
	- (b) If $X_p = 0$, then $(\alpha(p), \beta(p)) = \mathbb{R}$ and if $X = 0$ outside a compact subset of *M*, then $W = \mathbb{R} \times M$.
- (xiii) **Definition.** A C^∞ vector field *X* on a smooth manifold *M* is *complete* if it generates a global action of \R on M , that is, the domain of θ^X is $\R \times M$.
- (xiv) **Corollary.** If *M* is a compact smooth manifold, then every vector field on *M* is complete.
- (xv) **Theorem.** Let *X* be a C^{∞} vector field on a smooth manifold *M* and let *F* : *M* → *M* be a diffeomorphism. Then θ^X : *W* → *M* be the maximal flow generated by *X*. Then *X* is invariant under *F* if and only if $F(\theta(t, p)) =$ $\theta(t, F(p))$, whenever both sides are well-defined.
- (xvi) **Remark.** The main assertion in Theorem 2.4 (xv) can equivalently stated as $F_*(X) = X$ if and only if $\theta_t \circ F = F \circ \theta_t$ for all $t \in V_t$.
- (xvii) **Corollary.** A left invariant vector field on a Lie group *G* is complete.

2.5 One-parameter subgroups

- (i) **Definition.** Let *G* be a Lie group. A *one-parameter subgroup* of *G* is the image $F(\mathbb{R} \text{ of some Lie group homomorphism } F : \mathbb{R} \to G$.
- (ii) **Remark.** Let *G* be Lie group and let $F : \mathbb{R} \to G$ be a Lie group homomorphism. If φ : $G \times M \to M$ is an action of *G* on *M*, then φ induces an R-action $\varphi_F : \mathbb{R} \times M \to M$ on *M* via *F* defined by $\varphi_F(t, p) = \varphi(F(t), p)$.
- (iii) Example of one-parameter actions.
	- (a) Let $G = GL(3, \mathbb{R})$. Consider the homomorphism $F_1 : \mathbb{R} \to G$ defined by

$$
F_1(t) = \begin{pmatrix} e^{at} & 0 & 0 \\ 0 & e^{at} & 0 \\ 0 & 0 & e^{at} \end{pmatrix},
$$

and homomorphism $F_2 : \mathbb{R} \to G$ be defined by

$$
F_2(t) = \begin{pmatrix} 1 & at & bt + \frac{1}{2}act^2 \\ 0 & 1 & ct \\ 0 & 0 & 1 \end{pmatrix}.
$$

Since GL(3,R) has a natural action on \mathbb{R}^3 , by Remark 2.5 (ii), each F_i induces an action of $\mathbb R$ on $\mathbb R^3$. For example F_1 induces that action $\theta_1(t, x_1, x_2, x_3) = (e^{at}x_1, e^{at}x_2, e^{at}x_3)$ with $X_x^{\theta} = \dot{\theta}(a, x) = \sum_{i=1}^3 ax_i \frac{\partial}{\partial x_i}$ $\frac{\partial}{\partial x_i}$.

(b) Consider the homomorphism $F : \mathbb{R} \to SO(3)$ defined by

$$
F(t) = \begin{pmatrix} \cos(at) & \sin(at) & 0 \\ -\sin(at) & \cos(at) & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Since SO(3) acts on S^2 by rotations, the action induces an R-action θ on \mathcal{S}^2 (via F), which defines a one-parameter group of rotations about the x_3 -axis given by:

$$
\theta(t, x_1, x_2, x_3) = (x_1 \cos(at) + x_2 \sin(at), -x_1 \sin(at) + x_2 \cos(at), x_3).
$$

The orbits under this action are the latitudes of S^2 and X^θ is tangent to them and orthogonal to the x_3 -axis.

(c) A Lie group acts on itself by right translation (multiplication) defined by φ : $G \rightarrow$ Diffeo(*G*) given by φ (*a*) = R_a . Then φ induces an R-action θ : $\mathbb{R} \times G \to G$ via a homomorphism $F : \mathbb{R} \to G$ given by

$$
\theta(t,g) = R_{F(t)}(g) = gF(t).
$$

- (iv) **Theorem.** Let $F : \mathbb{R} \to g$ be a one-parameter subgroup of a Lie group *G* and let *X* be left-invariant vector field on *G* defined by $X_e = \dot{F}(0)$. Then $\theta(t, g) =$ *R*_{*F*(*t*)}(*g*) defines an action θ : $\mathbb{R} \times G \to G$ such that $X^{\theta} = X$. Conversely, let *X* be a left-invariant vector field and θ : $\mathbb{R} \times G \rightarrow G$ be the corresponding flow generated by *X*. Then $F(t) = \theta(t, e)$ is a one-parameter subgroup of *G* such that $\theta(t, g) = R_{F(t)}(g)$.
- (v) **Corollary.** Let *G* be a Lie group.
	- (a) There is a one-to-one correspondence between the elements of $T_e(G)$ and the one-parameter subgroups of *G*.
	- (b) For $Z \in T_e(G)$, let $\{F(t, Z) : t \in \mathbb{R}\}$, where $t \mapsto F(t, Z)$, be the unique corresponding one-parameter subgroup of *G*. Then $\mathbb{R} \times T_e(G) \to G$ is C^{∞} and satisfies $F(t, sZ) = F(st, Z)$.

2.6 One-parameter subgroups of Lie groups

(i) **Definition.** The exponential e^X of a matrix $X \in M_n(\mathbb{R})$ is defined by:

$$
e^X = 1 + \frac{X}{1!} + \frac{X^2}{2!} + \dots,\tag{†}
$$

whenever the series converges.

- (ii) **Theorem.** Consider the series (†) in Definition 2.6 (i) above.
	- (a) The series converges absolutely for all $X \in M_n(\mathbb{R})$ and uniformly on all compact subsets of $M_n(\mathbb{R})$.
	- (b) The mapping $\exp : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by $\exp(A) = e^{tA}$ is C^{∞} and Im $\exp \subset GL(n, \mathbb{R})$.
	- (c) If $A, B \in M_n(\mathbb{R})$ such that $AB = BA$, then $exp(A + B) = exp(A)exp(B)$.
- (iii) **Corollary.** For an $A \in M_n(\mathbb{R})$, consider the map $F : \mathbb{R} \to GL(n, \mathbb{R})$ defined by $F(t) = e^{tA}$.

(a) $F(\mathbb{R})$ is an one-parameter subgroup of \mathbb{R} whose corresponding vector field is given by

$$
\sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}} \right)_{I_n}.
$$

- (b) All one parameter subgroups are of this form. Moreover, $\dot{F}(0) = A =$ $(a_{ij}).$
- (iv) **Theorem.** Let *G* be a Lie group and let $H < G$ be a Lie subgroup. Then the one parameter subgroups of *H* are those one-parameter subgroups $F(\mathbb{R}) < G$ such that $\dot{F}(0) \in T_e(H)$ considered as a subspace of $T_e(G)$.
- (v) **Corollary.** Let $G = \mathbb{GL}(n, \mathbb{R})$ and let $H < G$ be a Lie subgroup.
	- (a) The one-parameter subgroups *H* are all of form $F(\mathbb{R})$, where $F(t) =$ e^{tA} .
	- (b) Moreover the entries of $A = (a_{ij})$ are components of the vector

$$
\dot{F}(0) = \sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}} \right)_e \in T_e(G),
$$

which is tangent to *H* at *e*.

(vi) Examples of one-parameter subgroups.

(a) If
$$
A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \in M_n(\mathbb{R})
$$
, then

$$
e^{tA} = \begin{pmatrix} 1 & ta & \frac{1}{2}act^2 \\ 0 & 1 & tc \\ 0 & 0 & 1 \end{pmatrix} \in GL(n, \mathbb{R}).
$$

(b) Consider $H = O(n) < G = GL(n, \mathbb{R})$. Then

$$
\mathfrak{o}(n) = \{ A \in M_n(\mathbb{R}) : e^{tA} \in H, \forall t \} = \{ A \in M_n(\mathbb{R}) : A^T = -A \}.
$$

Hence, $dim(o(n)) = n(n-1)/2$. A neighborhood of *O* ∈ $o(n)$ is mapped diffeomorphically by $X \mapsto e^x$ to a neighborhood of $I_n \in O(n)$.

- (vii) **Definition.** The *exponential mapping* $\exp : T_e(G) \to G$ is given by $\exp(Z) =$ *F*(1,*Z*), where for $Z \in T_e(G)$, $t \mapsto F(t, Z)$ is unique one-parameter subgroup determined by *Z*.
- (viii) **Theorem.** Let *G* be a Lie group.
	- (a) The exponential mapping exp: $T_e(G) \to G$ is C^∞ .
	- (b) For $Z \in T_e(G)$, let $\{F(t, Z) : t \in \mathbb{R}\}$, where $t \mapsto F(t, Z)$, be the unique one-parameter subgroup of *G* such that $\dot{F}(0) = Z$.
	- (c) The Jacobian matrix of exp at 0 is the identity matrix, that is, \exp_* is the identity.
	- (d) If *G* is a Lie subgroup of $GL(n,\mathbb{R})$, then for each $Z \in T_e(G)$, there exists $A = (a_{ij}) \in M_n(\mathbb{R})$ such that

$$
Z = \sum_{i,j} a_{ij} \left(\frac{\partial}{\partial x_{ij}} \right)_e.
$$

Moreover, for this *Z*, we have $exp(tZ) = e^{tA}$.

2.7 Lie algebra of vector fields

- (i) **Notation.** Let *M* be a smooth manifold. We denote by $\mathfrak{X}(M)$, the module over $C^\infty(M)$ of all C^∞ vector fields on M .
- (ii) We say a vector space $\mathscr L$ over $\mathbb R$ is a (real) *Lie algebra* if in addition to its vector space structure, it possesses a product map $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$ taking the pair (X, Y) to the elements $[X, Y]$ of $\mathscr L$ that satisfies the following properties.
	- (a) It is bilinear over \mathbb{R} : That is, for any $\alpha, \beta \in \mathbb{R}$ and $X_i, Y_i \in \mathcal{L}$ for $i = 1, 2$, we have:
		- (1) $[\alpha X_1 + \beta X_2, Y] = \alpha [X_1, Y] + \beta [X_2, Y].$
		- (2) $[X, \alpha Y_1 + \beta Y_2] = \alpha [X, Y_1] + \beta [X, Y_2].$
	- (b) It is skew-commutative: That is for any $X, Y \in \mathcal{L}$, we have:

$$
[X,Y]=-[Y,X].
$$

(c) It satisfies the Jacobi identity: That is, for any *X*, *Y*, *Z* $\in \mathcal{L}$, we have:

 $[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0.$

- (iii) Examples of Lie algebras.
	- (a) The vector space \mathbb{R}^3 with the usual vector cross product \times is a Lie algebra.
	- (b) The vector space $M_n(\mathbb{R})$ with the product defined by $[X, Y] = XY -$ *Y X*, for *X*, *Y* ∈ M_n (ℝ), is a Lie algebra.
- (iv) **Remark.** Let *M* be a smooth manifold. In general, given $X, Y \in \mathcal{X}(M)$, the product *X Y* , considered as an operator on *M*, does not determine a *C* ∞ vector field.
- (v) **Lemma.** Let *M* be a smooth manifold. Given *X*, $Y \in \mathfrak{X}(M)$, we have $XY -$ *YX* $\in \mathfrak{X}(M)$ according to the prescription

$$
(XY - YX)pf = X_p(Yf) - Y_p(Xf),
$$

where $f \in \mathscr{C}^{\infty}(p)$ and $Xf, Yf \in \mathscr{C}^{\infty}(p)$ are defined by $(Xf)(q) := X_q(f)$ and $(Yf)(q) := Y_q(f)$, for every *q* in some neighborhood of $U \ni p$.

- (vi) **Theorem** For a smooth manifold M , the space $\mathfrak{X}(M)$ with the product $(X, Y) \rightarrow [X, Y]$ is a Lie algebra.
- (vii) **Definition.** Let *M* be a smooth manifold and let *X*, $Y \in \mathfrak{X}(M)$. Let θ^X : $W \rightarrow M$ be the maximal flow generated by *X*. Then Lie derivative of *Y* with respect to *X*, is the vector field $L_X Y \in \mathfrak{X}(M)$ defined by:

$$
(L_X Y)_p = \lim_{t \to 0} \frac{1}{t} \left[(\theta^X_{-t})_*(Y_{\theta^X(-t,p)}) - Y_p \right] = \lim_{t \to 0} \frac{1}{t} \left[Y_p - (\theta^X_t)_*(Y_{\theta^X(-t,p)}) \right],
$$

at each $p \in M$.

- (viii) **Remark.** Let *M* be a smooth manifold and let *X*, $Y \in \mathfrak{X}(M)$.
	- (a) The tangent vector $(L_X Y)_p$ measures the rate of change of *Y* in direction of *X* along an integral curve of the vector field through *p*.
	- (b) If $Z_p(t) = (\theta_{-t}^X)_*(Y_{\theta^X(-t,p)}) \in T_p(M)$, viewed as a curve in \mathbb{R}^n , then $L(XY)_p = Z_p(0).$

(ix) **Lemma.** Let *M* be a smooth manifold and let $X \in \mathfrak{X}(M)$. Let $\theta^X : W \to M$ be the maximal flow generated by *X*. Given $p \in M$ and $f \in C^{\infty}(U)$, where *U* \ni *p* is an open set, we choose a δ > 0 and a neighborhood *V* \ni *p* such that $\theta^X((-\delta,\delta) \times V)$) ⊂ *U*. Then there exists a C^∞ function $g(t,q)$ defined on (−*δ*,*δ*)×*V* such that for *q* ∈ *V* and *t* ∈ (−*δ*,*δ*), we have:

$$
f(\theta_t(q)) = f(q) + tg(t, q)
$$
 and $X_q(f) = g(0, q)$.

(x) **Theorem.** Let *M* be a smooth manifold and let $X, Y \in \mathcal{X}(M)$. Then we have:

$$
L_XY=[X,Y].
$$

(xi) **Theorem.** Let *N*, *M* be smooth be smooth manifolds, and let $F: N \to M$ be a smooth mapping. For $i = 1,2$ let $X_i \in \mathfrak{X}(N)$ and $Y_i \in \mathfrak{X}(M)$ be vector fields such that $F_*(X_i) = Y_i$. Then:

$$
F_*[X_1, X_2] = [F_* (X_1), F_* (X_2)].
$$

(xii) **Corollary.**

- (a) The left-invariant vector fields on a Lie group *G* form a Lie algebra g with product $(X, Y) \rightarrow [X, Y]$ and dim(g) = dim(G).
- (b) If $F: G_1 \to G_2$ is a homomorphism of Lie groups, then $F_*: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a homomorphism of Lie algebras.
- (xiii) **Remark.** Let *G* be e Lie group, $H < G$ is a Lie subgroup, and $i : H \rightarrow G$ the inclusion. Then $i_*(\mathfrak{h})$ is a subalgebra of g, which consists of the elements of g tangent to *H* and to its cosets *g H*.
- (xiv) **Theorem.** Let *M* be a smooth manifold and let *X*, $Y \in \mathfrak{X}(M)$. Then $[X, Y] =$ 0 if and only if for each $p \in M$, there exists $\delta_p > 0$ such that

$$
\theta_s^X \circ \theta_t^Y(p) = \theta_t^X \circ \theta_s^Y(p),
$$

for all $|t|, |s| < \delta_p$.

2.8 Frobenius Theorem

- (i) **Definition.** Let *M* be a smooth manifold and let dim(*M*) = $n + k$. For each *p* ∈ *M*, we assign an *n*-dimensional subspace Δ_p ⊂ $T_p(M)$.
	- (a) Suppose in a neighnborhood of each $p \in M$, there exists *n* linearly independent C^{∞} vector fields $X_1, ..., X_n$ ∈ $\mathfrak{X}(M)$, which forms basis for all *q* ∈*U*. Then we say that ∆ is a *C* [∞]*-plane distribution of dimension n* on *M* and X_1, \ldots, X_n is a *local basis* of Δ .
	- (b) We say distribution ∆ is *involutive* if there exists a local basis *X*1,...,*Xⁿ* in a neighborhood of each point such that:

$$
[X_i, X_j] = \sum_{k=1}^n c_{ij}^k X_k, \text{ for } 1 \le i, j \le n,
$$

where the $c_{i j}^k \in C^\infty(M)$.

(ii) **Definition.** Let ∆ be a *C* [∞] distribution on a smooth manifold *M*, and let *N* be a connected smooth submanifold of *M*. If for each $q \in N$, we have $T_q(N) \subset \Delta_q$, then we say that *N* is an *intergral manifold* of Δ .

(iii) **Example of a plane distributions.**

- (a) If $M = \mathbb{R}^{n+k}$ and $\Delta = \langle X_i = \frac{\partial}{\partial x_i} \rangle$ $\frac{\partial}{\partial x_i}$: 1 ≤ *i* ≤ *n*). Then the distribution is the subspace of dimension \overline{n} consisting of all vectors parallel to \mathbb{R}^n at each $q \in M$.
- (b) Let *G* be e Lie group, $H < G$ is a Lie subgroup, and $i : H \rightarrow G$ the inclusion. Then the subalgebra $i_*(f)$ of g defines a left-invariant distribution Δ on *G* such that $\Delta_h = \Delta_h(H)$ for all $h \in H$.
- (iv) **Definition.** Let ∆ be a *C* [∞] distribution on a smooth manifold *M* and let dim(*M*) = $n + k$. We say that Δ is *completely integrable* if each $p \in M$ has a cubical neighborhood (U, φ) such that $E_i = \varphi_*^{-1}\left(\frac{\partial}{\partial x_i}\varphi_i\right)$ *∂xⁱ* for $1 \leq i \leq n$, are a local basis on *U* for ∆.
- (v) **Remark.** Let ∆ be a *C* [∞] completely integrable distribution on a smooth manifold *M* as in Definition 2.4 (iv). Then there exists an integral manifold *N* through each *q* ∈ *U* such that $T_q(N) = \Delta_q$, that is, dim(*N*) = *n*. In fact, $q = (a_1, \ldots, a_n)$, then an integral manifold through *q* is an *n*-slice given by

$$
N = \varphi^{-1} \{ x \in \varphi(U) : x_j = a_j, n+1 \le j \le m \}.
$$

Furthermore, this distribution is involutive since:

$$
[E_i, E_j] = \varphi_*^{-1} \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right] = 0, 1 \le i \text{ and } j \le n.
$$

A coordinate neighborhood (U, φ) as above is called a *flat* with respect to ∆.

- (vi) **Theorem (Frobenius).** A distribution ∆ on a smooth manifold *M* is completely integrable if and only if its involutive.
- (vii) **Corollary.** Let (U, φ) be a flat coordinate neighborhood relative to an involutive *n*-plane distribution ∆ on *M*. Then any connected integrable manifold *C* ⊂*U* must lie on a single *n*-slice

$$
S_a = \{q \in U : x_i(q) = a_i, n+1 \le i \le m\}.
$$

- (viii) **Theorem.** Let *M* be smooth manifold of dimension $n+k$ and let $N \subset M$ be an integral manifold of an involutive distribution Δ with dim(*N*) = dim(Δ). If *F*(*A*) ⊂ *N* is a C^∞ mapping of a manifold *A* into *M* such that *F*(*A*) ⊂ *N*, then *F* is a C^{∞} mapping into *N*.
- (ix) **Definition.** A *maximal integral manifold N* of an involutive distribution ∆ on a smooth manifold *M* is a connected integral manifold which contains every connected integral manifold that it intersects.
- (x) **Remark.**
	- (a) If *N* is the maximal integral manifold of an involutive distribution Δ on a smooth manifold *M*, then dim(*N*) = dim(Δ).
	- (b) At most one maximal integral manifold that can pass through a point $p \in M$.
- (xi) **Theorem.** Let *G* be a Lie group, g its Lie algebra, and let h be a subalgebra of g. Then there exists a unique subgroup $H < G$ whose Lie algebra is h.

2.9 Homogeneous spaces

(i) **Definition.** A smooth manifold *M* is said to be homogeneous space of the Lie group *G* if there exists a C^{∞} action of *G* on *M*.

- (ii) Examples of homogeneous spaces.
	- (a) Since the Lie group $O(n)$ has a transitive action on S^{n-1} , S^{n-1} is a homogeneous space of O(*n*).
	- (b) Since the Lie group GL(n , \mathbb{R}) has a transitive action on $\mathbb{R}^n \setminus \{0\}$, $\mathbb{R}^n \setminus \{0\}$ is a homogeneous space of $GL(n,\mathbb{R})$.
- (iii) **Theorem.** Let *G* be a Lie group and *H* a closed Lie subgroup. Then there exists a unique C^{∞} structure on G/H with the following properties.
	- (a) The canonical projection π : $G \rightarrow G/H$ is C^{∞} .
	- (b) Each $g \in G$ is in the image of a C^{∞} section (V, σ) on G/H .
	- (c) The natural action λ : $G \times G/H \to G/H$ is a C^{∞} action and dim(G/H) = $dim(G)$ − $dim(H)$.
- (iv) **Lemma.** If *H* is a connected Lie subgroup of a Lie group *G*, which is closed as a subset of *G*. then:
	- (a) Each coset *g H* is closed.
	- (b) There is a cubical neighborhood (U, φ) of any $g \in G$ such that for each coset *xH* \in *G*/*H* either *xH* ∩ *U* = \emptyset or a *xH* ∩ *U* is a single connected slice.
- (v) **Theorem.** Let *G* be a Lie group with a transitive action θ : $G \times M \rightarrow M$ on a smooth manifold *M*.
	- (a) The mapping $\tilde{F}: G \to M$ defined by $\tilde{F}(g) = \theta(g, a)$ is C^{∞} and rank equal to dim(*M*) everywhere on *G*.
	- (b) For $a \in M$, the stabilizer subgroup $H = \text{Stab}_{\theta}(a) = \{g \in G : \theta_{g}(g) = a\}$ is a closed subgroup of *G*. Hence, G/H is a C^{∞} manifold.
	- (c) The mapping $F: G/H \to M$ defined by $F(gH) = \tilde{F}(g)$ is a diffeomorphism. Moreover, if λ : $G \times G/H \rightarrow G/H$ is the natural action of *G* on *G*/*H*, then $F \circ \lambda_g = \theta_g \circ F$, for all $g \in G$.
- (vi) Example of Lie groups realized as closed stablilizer subgroups.

(a) We know that that $\text{Isom}(\mathbb{R}^n) \cong O(n) \times \mathbb{R}^n$. Consider the Lie subgroup of G of $GL(n+1,\mathbb{R})$ defined by

$$
G = \left\{ \begin{pmatrix} A & V^T \\ 0 \dots 0 & 1 \end{pmatrix} : A \in \mathcal{O}(n) \text{ and } V \in \mathbb{R}^n \right\}
$$

and the set

$$
X = \begin{pmatrix} X^T \\ 1 \end{pmatrix} : X \in \mathbb{R}^n \}.
$$

Then *G* acts transitively on *X* and $\text{Stab}_{\theta}(0) = O_n$. Hence, $O(n)$ is a closed subgroup of *G*.

(b) Consider the transitive action of the Lie group $G = SL(n, \mathbb{R})$ on $\mathbb{R}P^n$ via the action $(g, [x]) \stackrel{\theta}{\rightharpoonup} [gx].$ Then:

 $Stab_{\theta}([(1,0,\ldots,0)]) = \{ A = (a_{ij} \in SL(n,\mathbb{R}) : a_{11} \neq 0 \text{ and } a_{i1} = 0, \text{ for } i > 1 \}.$

- (c) Consider the transitive action θ : $G \times M \rightarrow M$ of the Lie group $G =$ GL(n , \mathbb{R}) on the Grassmanian $M = G(k, n)$, the set of k -frames through the origin. For a *k*-plane $P \in M$, let $H = \text{Stab}_{\theta}(P)$. Then $G/H \cong$ $G(k, n)$ and hence $G(k, n)$ is a manifold.
- (vii) **Remark.** If a Lie group acts transitively on set *X* in such a way that the stabilizer subgroup of a point $a \in X$ is a closed Lie subgroup, then there exists a unique C^{∞} structure on *X* such that the action is C^{∞} .

References

- [1] William M. Boothby. *An introduction to differentiable manifolds and Riemannian geometry*, volume 120 of *Pure and Applied Mathematics*. Academic Press, Inc., Orlando, FL, second edition, 1986.
- [2] John M. Lee. *Introduction to smooth manifolds*, volume 218 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2003.